A156787 Composite integers n such that 2^{n-1}=1 mod s(n), where s(n) is the sum of the distinct prime factors of n.
9, 10, 25, 27, 40, 49, 81, 100, 105, 116, 121, 125, 160, 169, 243, 250, 289, 343, 361, 400, 525, 529, 561, 568, 625, 640, 729, 805, 841, 945, 961, 1000, 1001, 1018, 1045, 1105, 1309, 1331, 1369, 1596, 1600, 1681, 1729, 1849, 1856, 1881, 2001, 2187, 2197, 2205
Offset: 1
Keywords
Examples
For n=2, the second number is a(2)=10 because s(10)=2+5=7 divides 2^{10-1}-1=2^9-1=511.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- F. Luca and V. Tipu, On positive integers n with a certain divisibility property, J. Integer Sequences 12 (2009), 11 pp.
Crossrefs
Cf. A006145.
Programs
-
Maple
B := {}; for n from 2 to 1000 do A := (numtheory[factorset])(n); b := add(a, `in`(a, A)); if `and`(b < n, `mod`(2^(n-1), b) = 1) then B := [op(B), n] else end if end do; print(c := 2);
-
Mathematica
Select[Range[2, 2300], CompositeQ[#] && PowerMod[2, #-1, Total[First /@ FactorInteger[#]]] == 1 &] (* Amiram Eldar, Nov 20 2019 *)
-
PARI
is(n)=if(isprime(n),0,my(f=factor(n)[,1]);Mod(2, sum(i=1, #f, f[i]))^(n-1)==1) \\ Charles R Greathouse IV, Feb 01 2013
Formula
n log n << a(n) << n^(1+e) for any e > 0. See Luca & Tipu for more precise results. - Charles R Greathouse IV, Feb 01 2013
Extensions
More terms from Amiram Eldar, Nov 20 2019