cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156788 Triangle T(n, k) = binomial(n, k)*A000166(n-k)*k^n with T(0, 0) = 1, read by rows.

This page as a plain text file.
%I A156788 #8 Jun 10 2021 02:56:15
%S A156788 1,0,1,0,0,4,0,3,0,27,0,8,96,0,256,0,45,640,2430,0,3125,0,264,8640,
%T A156788 29160,61440,0,46656,0,1855,118272,688905,1146880,1640625,0,823543,0,
%U A156788 14832,1899520,16166304,41287680,43750000,47029248,0,16777216,0,133497,34172928,438143580,1453326336,2214843750,1693052928,1452729852,0,387420489
%N A156788 Triangle T(n, k) = binomial(n, k)*A000166(n-k)*k^n with T(0, 0) = 1, read by rows.
%D A156788 J. Riordan, Combinatorial Identities, Wiley, 1968, p.194.
%H A156788 G. C. Greubel, <a href="/A156788/b156788.txt">Rows n = 0..50 of the triangle, flattened</a>
%F A156788 T(n, k) = binomial(n, k)*A000166(n-k)*k^n with T(0, 0) = 1.
%F A156788 T(n, k) = binomial(n, k)*b(n-k)*k^n, where b(n) = n*b(n-1) + (-1)^n and b(0) = 1.
%F A156788 Sum_{k=0..n} T(n, k) = A137341(n).
%F A156788 From _G. C. Greubel_, Jun 10 2021: (Start)
%F A156788 T(n, 1) = A000240(n).
%F A156788 T(n, n) = A000312(n). (End)
%e A156788 Triangle begins as:
%e A156788   1;
%e A156788   0,     1;
%e A156788   0,     0,       4;
%e A156788   0,     3,       0,       27;
%e A156788   0,     8,      96,        0,      256;
%e A156788   0,    45,     640,     2430,        0,     3125;
%e A156788   0,   264,    8640,    29160,    61440,        0,    46656;
%e A156788   0,  1855,  118272,   688905,  1146880,  1640625,        0, 823543;
%e A156788   0, 14832, 1899520, 16166304, 41287680, 43750000, 47029248,      0, 16777216;
%t A156788 A000166[n_]:= A000166[n]= If[n==0, 1, n*A000166[n-1] + (-1)^n];
%t A156788 T[n_, k_]:= If[n==0, 1, Binomial[n, k]*A000166[n-k]*k^n];
%t A156788 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jun 10 2021 *)
%o A156788 (Sage)
%o A156788 def A000166(n): return 1 if (n==0) else n*A000166(n-1) + (-1)^n
%o A156788 def A156788(n,k): return 1 if (n==0) else binomial(n,k)*k^n*A000166(n-k)
%o A156788 flatten([[A156788(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 10 2021
%Y A156788 Cf. A000166, A000240, A000312, A137341.
%K A156788 nonn,tabl
%O A156788 0,6
%A A156788 _Roger L. Bagula_, Feb 15 2009
%E A156788 Edited by _G. C. Greubel_, Jun 10 2021