cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156790 Number of first quadrant lattice squares inside the circle x^2+y^2=(2^n)^2.

This page as a plain text file.
%I A156790 #9 Jun 02 2025 01:23:07
%S A156790 0,1,8,41,183,770,3149,12730,51209,205356,822500,3292134,13172634,
%T A156790 52698912,210812207,843281848,3373193506,13492906143,53971888157,
%U A156790 215888078393,863553363881,3454215553470,13816866413106,55267474046659
%N A156790 Number of first quadrant lattice squares inside the circle x^2+y^2=(2^n)^2.
%C A156790 a(n)/4^n converges to Pi/4 from below.
%H A156790 Wikipedia, <a href="http://en.wikipedia.org/wiki/Gauss_circle_problem">Gauss circle problem</a> [From _Jaume Oliver Lafont_, Apr 20 2010]
%e A156790 Let + represent a square inside the circle and x a square traversed by the circle.
%e A156790 xx
%e A156790 +x a(1)=1
%e A156790 xxx
%e A156790 ++xx
%e A156790 +++x
%e A156790 +++x a(2)=8
%o A156790 (PARI) a(n)=sum(m=1,2^n-1,floor(sqrt(4^n-m^2)))
%Y A156790 Cf. A057655.
%Y A156790 Cf. A177144. [From _Jaume Oliver Lafont_, May 03 2010]
%K A156790 nonn
%O A156790 0,3
%A A156790 _Jaume Oliver Lafont_, Feb 15 2009
%E A156790 a(19) corrected by Sophia Keith, Sep 15 2024