This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156815 #7 Sep 08 2022 08:45:41 %S A156815 1,0,1,0,1,2,0,2,6,6,0,6,28,36,24,0,24,180,300,240,120,0,120,1488, %T A156815 3240,3120,1800,720,0,720,15120,43344,50400,33600,15120,5040,0,5040, %U A156815 182880,695520,979776,756000,383040,141120,40320,0,40320,2570400,13068000,22377600,20018880,11430720,4656960,1451520,362880 %N A156815 Triangle T(n, k) = n!*StirlingS2(n, k)/binomial(n, k), read by rows. %D A156815 Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page 99. %H A156815 G. C. Greubel, <a href="/A156815/b156815.txt">Rows n = 0..50 of the triangle, flattened</a> %F A156815 T(n, k) = n!*StirlingS2(n, k)/binomial(n, k). %F A156815 From _G. C. Greubel_, Jun 10 2021: (Start) %F A156815 T(n, 1) = T(n, n) = n!. %F A156815 T(n, 2) = 2*A029767(n+1). %F A156815 T(n, n-1) = A180119(n). (End) %e A156815 Triangle begins as: %e A156815 1; %e A156815 0, 1; %e A156815 0, 1, 2; %e A156815 0, 2, 6, 6; %e A156815 0, 6, 28, 36, 24; %e A156815 0, 24, 180, 300, 240, 120; %e A156815 0, 120, 1488, 3240, 3120, 1800, 720; %e A156815 0, 720, 15120, 43344, 50400, 33600, 15120, 5040; %e A156815 0, 5040, 182880, 695520, 979776, 756000, 383040, 141120, 40320; %t A156815 T[n_, k_] = n!*StirlingS2[n, k]/Binomial[n, k]; %t A156815 Table[T[n, k], {n, 0, 12}, {k,0,n}]//Flatten %o A156815 (Magma) [Factorial(n)*StirlingSecond(n,k)/Binomial(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jun 10 2021 %o A156815 (Sage) flatten([[factorial(n)*stirling_number2(n,k)/binomial(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 10 2021 %Y A156815 Cf. A048993, A029767, A180119. %K A156815 nonn,tabl %O A156815 0,6 %A A156815 _Roger L. Bagula_, Feb 16 2009 %E A156815 Edited by _G. C. Greubel_, Jun 10 2021