cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156833 A054525 * A156348 * [1,2,3,...].

Original entry on oeis.org

1, 2, 3, 6, 5, 16, 7, 24, 24, 38, 11, 103, 13, 68, 127, 144, 17, 261, 19, 404, 291, 152, 23, 994, 370, 206, 540, 1093, 29, 2195, 31, 1584, 943, 338, 2543, 4808, 37, 416, 1479, 7371, 41, 7929, 43, 4691, 8976, 596, 47, 18876, 6510, 11035, 3091
Offset: 1

Views

Author

Gary W. Adamson, Feb 16 2009

Keywords

Comments

Conjecture: for n>1, a(n) = n iff n is prime.
Companion to A156834: (1, 2, 3, 5, 5, 12, 7, 17, 19,...).

Examples

			a(4) = 6 since first 4 terms of A156348 * [1, 2, 3, 4,...] = (1, 3, 4, 9);
Then (1, 3, 4, 9) dot (0, -1, 0, 1) = (0 - 3 + 0 + 9) = 6. Row 4 of A054525 = (0, -1, 0, 1).
		

Crossrefs

Programs

  • Maple
    A156833T := proc(n,k)
        add(A054525(n,j)*A156348(j,k),j=k..n) ;
    end proc:
    A156833 := proc(n)
        add(A156833T(n,k)*k,k=1..n) ;
    end proc: # R. J. Mathar, Mar 03 2013
  • Mathematica
    A054525[n_, k_] := If[Divisible[n, k], MoebiusMu[n/k], 0];
    A156348[n_, k_] := Which[k < 1 || k > n, 0, Mod[n, k] == 0, Binomial[n/k - 2 + k, k - 1], True, 0];
    T[n_, k_] := Sum[A054525[n, j]*A156348[j, k], {j, k, n}];
    a[n_] := Sum[T[n, k]*k, {k, 1, n}];
    Table[a[n], {n, 1, 51}] (* Jean-François Alcover, Oct 15 2023 *)

Formula

A054525 * A156348 * [1,2,3,...]

Extensions

Extended beyond a(14) by R. J. Mathar, Mar 03 2013