This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156901 #7 Jan 07 2022 13:05:25 %S A156901 1,1,1,-2,1,1,-8,8,-4,1,1,-22,55,-52,23,-6,1,1,-52,290,-472,394,-188, %T A156901 50,-8,1,1,-114,1265,-3624,4838,-3668,1750,-536,97,-10,1,1,-240,4884, %U A156901 -24092,49239,-56448,40664,-19320,6231,-1360,180,-12,1,1,-494,17419,-142124,441625,-730898,749723,-515944,247067,-83122,19673,-3244,331,-14,1 %N A156901 Triangle formed by coefficients of the expansion of p(x, n), where p(x,n) = (1 + 2*x - x^2)^(n + 1)*Sum_{j >= 0} (j+1)^n*(-2*x + x^2)^j. %H A156901 G. C. Greubel, <a href="/A156901/b156901.txt">Rows n = 0..50 of the irregular triangle, flattened</a> %F A156901 T(n, k) = coefficients of the expansion of p(x, n), where p(x,n) = (1 + 2*x - x^2)^(n + 1)*Sum_{j >= 0} (j+1)^n*(-2*x + x^2)^j. %F A156901 T(n, 1) = (-1)*A005803(n) for n >= 2. %e A156901 Irregular triangle begins as: %e A156901 1; %e A156901 1; %e A156901 1, -2, 1; %e A156901 1, -8, 8, -4, 1; %e A156901 1, -22, 55, -52, 23, -6, 1; %e A156901 1, -52, 290, -472, 394, -188, 50, -8, 1; %e A156901 1, -114, 1265, -3624, 4838, -3668, 1750, -536, 97, -10, 1; %e A156901 1, -240, 4884, -24092, 49239, -56448, 40664, -19320, 6231, -1360, 180, -12, 1; %t A156901 p[x_, n_]= (1+2*x-x^2)^(n+1)*Sum[(k+1)^n*(-2*x+x^2)^k, {k,0,Infinity}]; %t A156901 Table[CoefficientList[p[x, n], x], {n,0,10}]//Flatten %o A156901 (Sage) %o A156901 def T(n, k): return ( (1+2*x-x^2)^(n+1)*sum((j+1)^n*(x^2-2*x)^j for j in (0..2*n+1)) ).series(x, 2*n+2).list()[k] %o A156901 flatten([1]+[[T(n, k) for k in (0..2*n-2)] for n in (1..12)]) # _G. C. Greubel_, Jan 07 2022 %Y A156901 Cf. A005803, A156890, A156896, A156918. %K A156901 sign,tabf %O A156901 0,4 %A A156901 _Roger L. Bagula_, Feb 17 2009 %E A156901 Edited by _G. C. Greubel_, Jan 07 2022