cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156919 Table of coefficients of polynomials related to the Dirichlet eta function.

This page as a plain text file.
%I A156919 #75 Feb 16 2025 08:33:09
%S A156919 1,2,1,4,10,1,8,60,36,1,16,296,516,116,1,32,1328,5168,3508,358,1,64,
%T A156919 5664,42960,64240,21120,1086,1,128,23488,320064,900560,660880,118632,
%U A156919 3272,1,256,95872,2225728
%N A156919 Table of coefficients of polynomials related to the Dirichlet eta function.
%C A156919 Essentially the same as A185411. Row reverse of A185410. - _Peter Bala_, Jul 24 2012
%C A156919 The SF(z; n) formulas, see below, were discovered while studying certain properties of the Dirichlet eta function.
%C A156919 From _Peter Bala_, Apr 03 2011: (Start)
%C A156919 Let D be the differential operator 2*x*d/dx. The row polynomials of this table come from repeated application of the operator D to the function g(x) = 1/sqrt(1 - x). For example,
%C A156919   D(g) = x*g^3
%C A156919   D^2(g) = x*(2 + x)*g^5
%C A156919   D^3(g) = x*(4 + 10*x + x^2)*g^7
%C A156919   D^4(g) = x*(8 + 60*x + 36*x^2 + x^3)*g^9.
%C A156919 Thus this triangle is analogous to the triangle of Eulerian numbers A008292, whose row polynomials come from the  repeated application of the operator x*d/dx to the function 1/(1 - x). (End)
%H A156919 D. H. Lehmer, <a href="http://www.jstor.org/stable/2322496">Interesting Series Involving the Central Binomial Coefficient</a>, Am. Math. Monthly 92 (1985) 449-457, Polynomial V in eq (17). [R. J. Mathar, Feb 24 2009]
%H A156919 Shi-Mei Ma, <a href="http://arxiv.org/abs/1204.4963">A family of two-variable derivative polynomials for tangent and secant</a>, arXiv: 1204.4963v3 [math.CO], 2012.
%H A156919 Shi-Mei Ma, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i1p11">A family of two-variable derivative polynomials for tangent and secant</a>, El J. Combinat. 20 (1) (2013) P11
%H A156919 S.-M. Ma and T. Mansour, <a href="http://arxiv.org/abs/1409.6525">The 1/k-Eulerian polynomials and k-Stirling permutations</a>, arXiv preprint arXiv:1409.6525 [math.CO], 2014.
%H A156919 S.-M. Ma and Y.-N. Yeh, <a href="http://arxiv.org/abs/1503.06601">Stirling permutations, cycle structures of permutations and perfect matchings</a>, arXiv preprint arXiv:1503.06601 [math.CO], 2015.
%H A156919 Carla D. Savage and Gopal Viswanathan, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i1p9">The 1/k-Eulerian polynomials</a>, Elec. J. of Comb., Vol. 19, Issue 1, #P9 (2012).
%H A156919 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DirichletEtaFunction.html">Dirichlet Eta Function</a>
%F A156919 SF(z; n) = Sum_{m >= 1} m^(n-1)*4^(-m)*z^(m-1)*Gamma(2*m+1)/(Gamma(m)^2) = P(z;n) / (2^(n+1)*(1-z)^((2*n+3)/2)) for n >= 0. The polynomials P(z;n) = Sum_{k = 0..n} a(k)*z^k generate the a(n) sequence.
%F A156919 If we write the sequence as a triangle the following relation holds: T(n,m) = (2*m+2)*T(n-1,m) + (2*n-2*m+1)*T(n-1,m-1) with T(n,m=0) = 2^n and T(n,n) = 1, n >= 0 and 0 <= m <= n.
%F A156919 G.f.: 1/(1-xy-2x/(1-3xy/(1-4x/(1-5xy/(1-6x/(1-7xy/(1-8x/(1-... (continued fraction). - _Paul Barry_, Jan 26 2011
%F A156919 From _Peter Bala_, Apr 03 2011 (Start)
%F A156919 E.g.f.: exp(z*(x + 2)) * (1 - x)/(exp(2*x*z) - x*exp(2*z))^(3/2) = Sum_{n >= 0} P(x,n)*z^n/n! = 1 + (2 + x)*z + (4 + 10*x + x^2)*z^2/2! + (8 + 60*x + 36*x^2 + x^3)*z^3/3! + ... .
%F A156919 Explicit formula for the row polynomials:
%F A156919 P(x,n-1) = Sum_{k = 1..n} 2^(n-2*k)*binomial(2k,k)*k!*Stirling2(n,k)*x^(k-1)*(1 - x)^(n-k).
%F A156919 The polynomials x*(1 + x)^n * P(x/(x + 1),n) are the row polynomials of A187075.
%F A156919 The polynomials x^(n+1) * P((x + 1)/x,n) are the row polynomials of A186695.
%F A156919 Row sums are A001147(n+1). (End)
%F A156919 Sum_{k = 0..n} (-1)^k*T(n,k) = (-1)^binomial(n,2)*A012259(n+1). - _Johannes W. Meijer_, Sep 27 2011
%e A156919 The first few rows of the triangle are:
%e A156919   [1]
%e A156919   [2, 1]
%e A156919   [4, 10, 1]
%e A156919   [8, 60, 36, 1]
%e A156919   [16, 296, 516, 116, 1]
%e A156919 The first few P(z;n) are:
%e A156919   P(z; n=0) = 1
%e A156919   P(z; n=1) = 2 + z
%e A156919   P(z; n=2) = 4 + 10*z + z^2
%e A156919   P(z; n=3) = 8 + 60*z + 36*z^2 + z^3
%e A156919 The first few SF(z;n) are:
%e A156919   SF(z; n=0) = (1/2)*(1)/(1-z)^(3/2);
%e A156919   SF(z; n=1) = (1/4)*(2+z)/(1-z)^(5/2);
%e A156919   SF(z; n=2) = (1/8)*(4+10*z+z^2)/(1-z)^(7/2);
%e A156919   SF(z; n=3) = (1/16)*(8+60*z+36*z^2+z^3)/(1-z)^(9/2);
%e A156919 In the Savage-Viswanathan paper, the coefficients appear as
%e A156919   1;
%e A156919   1,    2;
%e A156919   1,   10,     4;
%e A156919   1,   36,    60,     8;
%e A156919   1,  116,   516,   296,    16;
%e A156919   1,  358,  3508,  5168,  1328,   32;
%e A156919   1, 1086, 21120, 64240, 42960, 5664, 64;
%e A156919   ...
%p A156919 A156919 := proc(n,m) if n=m then 1; elif m=0 then 2^n ; elif m<0 or m>n then 0; else 2*(m+1)*procname(n-1,m)+(2*n-2*m+1)*procname(n-1,m-1) ; end if; end proc: seq(seq(A156919(n,m), m=0..n), n=0..7); # _R. J. Mathar_, Feb 03 2011
%t A156919 g[0] = 1/Sqrt[1-x]; g[n_] := g[n] = 2x*D[g[n-1], x]; p[n_] := g[n] / g[0]^(2n+1) // Cancel; row[n_] := CoefficientList[p[n], x] // Rest; Table[row[n], {n, 0, 9}] // Flatten (* _Jean-François Alcover_, Aug 09 2012, after _Peter Bala_ *)
%t A156919 Flatten[Table[Rest[CoefficientList[Nest[2 x D[#, x] &, (1 - x)^(-1/2), k] (1 - x)^(k + 1/2), x]], {k, 10}]] (* _Jan Mangaldan_, Mar 15 2013 *)
%Y A156919 A142963 and this sequence can be mapped onto the A156920 triangle.
%Y A156919 FP1 sequences A000340, A156922, A156923, A156924.
%Y A156919 FP2 sequences A050488, A142965, A142966, A142968.
%Y A156919 Appears in A162005, A000182, A162006 and A162007.
%Y A156919 Cf. A186695, A187075.
%Y A156919 Cf. A185410 (row reverse), A185411.
%K A156919 easy,nonn,tabl
%O A156919 0,2
%A A156919 _Johannes W. Meijer_, Feb 20 2009, Jun 24 2009
%E A156919 Minor edits from _Johannes W. Meijer_, Sep 27 2011