This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156925 #19 May 19 2021 00:22:59 %S A156925 1,1,1,1,8,-11,-6,1,38,-108,-242,839,-444,-180,1,144,-425,-7382,48451, %T A156925 -96764,-2559,257002,-312444,88344,30240,1,487,720,-130472,1277794, %U A156925 -4193514,-6504496 %N A156925 FP2 polynomials related to the generating functions of the left hand columns of the A156920 triangle. %C A156925 The FP2 polynomials appear in the numerators of the GF2 o.g.f.s. of the left hand columns of A156920. The FP2 can be calculated with the formula of the LHC sequence, see A156920, and the formula for the general structure of the generating function GF2, see below. %C A156925 An appropriate name for the FP2 polynomials seems to be the flower polynomials of the second kind because the zero patterns of these polynomials look like flowers. The zero patterns of the FP2 and the FP1, see A156921, resemble each other closely. %C A156925 A Maple program that generates for a left hand column with a certain LHCnr its GF2 and FP2 can be found below. LHCnr stands for left hand column number and starts from 1. %F A156925 G.f.: GF2(z; LHCnr) = FP2(z; LHCnr)/Product_{m=1..LHCnr} (1-m*z)^(LHCnr-m+1). %F A156925 Row sum(n+1) = (-1)^(n)*2*(n+1)!*Row sum(n); Row sum(n=0) = 1. %e A156925 The first few rows of the "triangle" of the coefficients of the FP2 polynomials. %e A156925 In the columns the coefficients of the powers of z^m, m=0,1,2,..., appear. %e A156925 [1] %e A156925 [1, 1] %e A156925 [1, 8, -11, -6] %e A156925 [1, 38, -108, -242, 839, -444, -180] %e A156925 [1, 144, -425, -7382, 48451, -96764, -2559, 257002, -312444, 88344, 30240] %e A156925 Matrix of the coefficients of the FP2 polynomials. The coefficients in the columns of this matrix are the powers of z^m, m=0,1,2,... %e A156925 [1, 0, 0, 0, 0, 0, 0] %e A156925 [1, 1, 0, 0, 0, 0, 0] %e A156925 [1, 8 , -11, -6, 0, 0, 0] %e A156925 [1, 38, -108, -242, 839, -444, -180] %e A156925 The first few FP2 polynomials are: %e A156925 FP2(z; LHCnr = 1) = 1 %e A156925 FP2(z; LHCnr = 2) = (1+z) %e A156925 FP2(z; LHCnr = 3) = 1+8*z-11*z^2-6*z^3 %e A156925 Some GF2(z;LHCnr) are: %e A156925 GF2(z; LHCnr = 3) = (1+8*z-11*z^2-6*z^3)/((1-z)^3*(1-2*z)^2*(1-3*z)) %e A156925 GF2(z; LHCnr = 4) = (1+38*z-108*z^2-242*z^3+839*z^4-444*z^5-180*z^6)/((1-z)^4*(1-2*z)^3*(1-3*z)^2*(1-4*z)) %p A156925 LHCnr:=5; LHCmax:=(LHCnr)*(LHCnr-1)/2: RHCend:=LHCnr+LHCmax: for k from LHCnr to RHCend do for n from 0 to k do S2[k,n]:=sum((-1)^(n+i)*binomial(n,i)*i^k/n!,i=0..n) end do: G(k,x):= sum(S2[k,p]*((2*p)!/p!)*x^p/(1-4*x)^(p+1),p=0..k)/ (((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k,x)): nmax:=degree(fx); for n from 0 to nmax do d[n]:= coeff(fx,x,n)/2^n end do: LHC[n]:=d[LHCnr-1] end do: a:=n-> LHC[n]: seq(a(n), n=LHCnr..RHCend); for nx from 0 to LHCmax do num:=sort(sum(A[t]*z^t,t=0..LHCmax)): nom:=product((1-u*z)^(LHCnr-u+1),u=1..LHCnr); LHCb:=series(num/nom,z,nx+1); y:=coeff(LHCb,z,nx)-A[nx]; x:=LHC[LHCnr+nx]; A[nx]:=x-y; end do: FP2[LHCnr]:=sort(num,z, ascending); GenFun[LHCnr]:= FP2[LHCnr]/ product((1-m*z)^(LHCnr-m+1), m=1..LHCnr); %Y A156925 Cf. A156920, A156921, A156927, A156933. %Y A156925 For the first few GF2's see A050488, A142965, A142966 and A142968. %Y A156925 Row sums(n) = A156926(n). %Y A156925 The number of FP2 terms follow the 'Lazy Caterer's sequence' A000124. %Y A156925 For the polynomials in the denominators of the GF2(z;LHCnr) see A157703. %K A156925 sign,tabf,more,uned %O A156925 0,5 %A A156925 _Johannes W. Meijer_, Feb 20 2009