This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156930 #4 Jul 22 2025 06:22:13 %S A156930 119,1654,5784,-57421,-974120,-8191112,-51264392,-266367722, %T A156930 -1204269647,-4832097594,-17187443308,-52433219783,-120342975558, %U A156930 -58288009528,1603731045044,13940518848356 %N A156930 G.f. of the z^3 coefficients of the FP1 in the fourth column of the A156921 matrix. %F A156930 a(n)=40*a(n-1)-755*a(n-2)+8946*a(n-3)-74677*a(n-4)+467156*a(n-5)-2274363*a(n-6)+8833486*a(n-7)-27833039*a(n-8)+71958408*a(n-9)-153781873*a(n-10)+272810702*a(n-11)-402324879*a(n-12)+492639700*a(n-13)-498877265*a(n-14)+414825042*a(n-15)-280100140*a(n-16)+151065320*a(n-17)-63500432*a(n-18)+20037984*a(n-19)-4463424*a(n-20)+625536*a(n-21)-41472*a(n-22) %F A156930 G.f.: GF3(z;m=3) = z^3*( 119-3106*z+29469*z^2-104585*z^3-220481*z^4+3601363*z^5-15487305*z^6+34949165*z^7-39821950*z^8+4356011*z^9+46881744*z^10-51274736*z^11+ 9005908*z^12+14663472*z^13-5205168*z^14-1456704*z^15-20736*z^16)/((1-z)^10*(1-2*z)^7*(1-3*z)^4*(1-4*z)) %Y A156930 Cf. A156927 %Y A156930 Equals fourth column of A156921 %Y A156930 Other columns A156928, A156929, A156931 %K A156930 easy,sign %O A156930 3,1 %A A156930 _Johannes W. Meijer_, Feb 20 2009