This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156931 #2 Mar 30 2012 18:59:44 %S A156931 126,8689,300930,5663483,69028169,613038531,4234224501,23275739871, %T A156931 98332765273,250304681662,-554375755759,-13379311589392, %U A156931 -119762221369238,-826135093245122,-4949174987335110 %N A156931 G.f. of the z^4 coefficients of the FP1 in the fifth column of the A156921 matrix. %F A156931 G.f.: GF3(z;m=4) = z^3*(126-761*z-9285*z^2-1277673*z^3+46183284*z^4-696765279*z^5+5823518147*z^6-25089694147*z^7-12711864696*z^8+988743755109*z^9-7652560832135*z^10+35510543219541*z^11- 113638922483756*z^12+ 252348200449359*z^13-345027066386175*z^14+ 81356029034411*z^15+ 881468053442834*z^16- 2383892701491756*z^17+3430328807256360*z^18-2918614790283444*z^19+ 1018849254500448*z^20+712292304270640*z^21-1071408562243680*z^22+ 470620280404224*z^23+19240926537600*z^24-78111305206272*z^25+ 11628096196608*z^26+3657667166208*z^27+99851304960*z^28 )/((1-z)^13*(1-2*z)^10*(1-3*z)^7*(1-4*z)^4*(1-5*z)) %Y A156931 Cf. A156927 %Y A156931 Equals fifth column of A156921 %Y A156931 Other columns A156928, A156929, A156930 %K A156931 easy,sign %O A156931 3,1 %A A156931 _Johannes W. Meijer_, Feb 20 2009