This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A156984 #13 Dec 17 2023 15:08:45 %S A156984 1,0,2,1,1,6,2,7,8,20,9,23,47,45,70,44,121,214,281,224,252,265,719, %T A156984 1312,1602,1554,1050,924,1854,5041,9148,11334,10548,8142,4752,3432, %U A156984 14833,40319,73229,90507,84879,63849,41019,21021,12870,133496,362881,659006,814783,763196,576643,364166,200629,91520,48620 %N A156984 Triangle T(n, k) = n!*Sum_{j=k..n} (-1)^(j+k)*binomial(k+j, j)/j!, read by rows. %C A156984 Row sums are: {1, 2, 8, 37, 194, 1136, 7426, 54251, 442526, 4014940, ...}. %C A156984 The first column gives the subfactorials, or rencontres, numbers A000166. See Riordan's p_n(k) equation 17 for further reference. %D A156984 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 57-65 %H A156984 G. C. Greubel, <a href="/A156984/b156984.txt">Rows n = 0..50 of the triangle, flattened</a> %F A156984 T(n, k) = n!*Sum_{j=k..n} (-1)^(j+k)*binomial(k+j, j)/j!. %e A156984 Triangle begins as: %e A156984 1; %e A156984 0, 2; %e A156984 1, 1, 6; %e A156984 2, 7, 8, 20; %e A156984 9, 23, 47, 45, 70; %e A156984 44, 121, 214, 281, 224, 252; %e A156984 265, 719, 1312, 1602, 1554, 1050, 924; %e A156984 1854, 5041, 9148, 11334, 10548, 8142, 4752, 3432; %e A156984 14833, 40319, 73229, 90507, 84879, 63849, 41019, 21021, 12870; %e A156984 133496, 362881, 659006, 814783, 763196, 576643, 364166, 200629, 91520, 48620; %p A156984 A156984:= (n,k) -> add( (-1)^(j+k)*binomial(k+j,j)*(n!/j!), j=k..n ); %p A156984 seq(seq(A156984(n,k), k=0..n), n=0..12); # _G. C. Greubel_, Mar 09 2021 %t A156984 Table[n!*Sum[(-1)^(j-k)*Binomial[k+j, j]/j!, {j,k,n}], {n,0,12}, {k,0,n}]//Flatten %o A156984 (Sage) flatten([[sum( (-1)^(j+k)*binomial(n,j)*binomial(k+j,j)*factorial(n-j) for j in (k..n) ) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Mar 09 2021 %o A156984 (Magma) [(&+[ (-1)^(j+k)*Binomial(n,j)*Binomial(k+j,j)*Factorial(n-j): j in [k..n]]): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Mar 09 2021 %Y A156984 Cf. A000166. %K A156984 nonn,tabl %O A156984 0,3 %A A156984 _Roger L. Bagula_, Feb 20 2009 %E A156984 Edited by _G. C. Greubel_, Mar 09 2021