This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157011 #18 Feb 22 2019 21:17:57 %S A157011 1,1,2,1,5,4,1,9,23,8,1,14,82,93,16,1,20,234,607,343,32,1,27,588,2991, %T A157011 3800,1189,64,1,35,1365,12501,30155,21145,3951,128,1,44,3010,47058, %U A157011 195626,256500,108286,12749,256,1,54,6416,165254,1111910,2456256,1932216,522387,40295,512 %N A157011 Triangle T(n,k) read by rows: T(n,k)= (k-1)*T(n-1,k) + (n-k+2)*T(n-1, k-1), with T(n,1)=1, for 1 <= k <= n, n >= 1. %C A157011 Row sums are apparently in A002627. %C A157011 The Mathematica code gives ten sequences of which the first few are in the OEIS (see Crossrefs section). - _G. C. Greubel_, Feb 22 2019 %H A157011 G. C. Greubel, <a href="/A157011/b157011.txt">Rows n = 1..100 of triangle, flattened</a> %e A157011 The triangle starts in row n=1 as: %e A157011 1; %e A157011 1, 2; %e A157011 1, 5, 4; %e A157011 1, 9, 23, 8; %e A157011 1, 14, 82, 93, 16; %e A157011 1, 20, 234, 607, 343, 32; %e A157011 1, 27, 588, 2991, 3800, 1189, 64; %e A157011 1, 35, 1365, 12501, 30155, 21145, 3951, 128; %e A157011 1, 44, 3010, 47058, 195626, 256500, 108286, 12749, 256; %e A157011 1, 54, 6416, 165254, 1111910, 2456256, 1932216, 522387, 40295, 512; %p A157011 A157011 := proc(n,k) if k <0 or k >= n then 0; elif k =0 then 1; else k*procname(n-1,k)+(n-k+1)*procname(n-1,k-1) ; end if; end proc: # _R. J. Mathar_, Jun 18 2011 %t A157011 e[n_, 0, m_]:= 1; %t A157011 e[n_, k_, m_]:= 0 /; k >= n; %t A157011 e[n_, k_, m_]:= (k+m)*e[n-1, k, m] + (n-k+1-m)*e[n-1, k-1, m]; %t A157011 Table[Flatten[Table[Table[e[n, k, m], {k,0,n-1}], {n,1,10}]], {m,0,10}] %t A157011 T[n_, 1]:= 1; T[n_, n_]:= 2^(n-1); T[n_, k_]:= T[n, k] = (k-1)*T[n-1, k] + (n-k+2)*T[n-1, k-1]; Table[T[n, k], {n, 1, 10}, {k, 1, n}]//Flatten (* G. C. Greubel, Feb 22 2019 *) %o A157011 (PARI) {T(n, k) = if(k==1, 1, if(k==n, 2^(n-1), (k-1)*T(n-1, k) + (n-k+2)* T(n-1, k-1)))}; %o A157011 for(n=1, 10, for(k=1, n, print1(T(n, k), ", "))) \\ _G. C. Greubel_, Feb 22 2019 %o A157011 (Sage) %o A157011 def T(n, k): %o A157011 if (k==1): %o A157011 return 1 %o A157011 elif (k==n): %o A157011 return 2^(n-1) %o A157011 else: return (k-1)*T(n-1, k) + (n-k+2)* T(n-1, k-1) %o A157011 [[T(n, k) for k in (1..n)] for n in (1..10)] # _G. C. Greubel_, Feb 22 2019 %Y A157011 Cf. A000096 (column k=1), A002627, A008517. %Y A157011 Cf. This sequence (m=0), A008292 (m=1), A157012 (m=2), A157013 (m=3). %K A157011 nonn,tabl,easy %O A157011 1,3 %A A157011 _Roger L. Bagula_, Feb 21 2009