This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157013 #12 May 25 2023 03:57:32 %S A157013 1,1,-1,1,-4,1,1,-15,5,-1,1,-58,10,-6,1,1,-229,-66,-26,7,-1,1,-912, %T A157013 -1017,-288,23,-8,1,1,-3643,-8733,-4779,-415,-41,9,-1,1,-14566,-61880, %U A157013 -63606,-17242,-1158,40,-10,1,1,-58257,-396796,-691036,-375118,-60990,-1956,-60,11,-1 %N A157013 Riordan's general Eulerian recursion: T(n, k) = (k+2)*T(n-1, k) + (n-k-1) * T(n-1, k-1) with T(n,1) = 1, T(n,n) = (-1)^(n-1). %C A157013 Row sums are {1, 0, -2, -10, -52, -314, -2200, -17602, -158420, -1584202, ...}. %C A157013 This recursion set doesn't seem to produce the Eulerian 2nd A008517. %C A157013 The Mathematica code gives ten sequences of which the first few are in the OEIS (see Crossrefs section). - _G. C. Greubel_, Feb 22 2019 %D A157013 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 214-215 %H A157013 G. C. Greubel, <a href="/A157013/b157013.txt">Rows n = 1..100 of triangle, flattened</a> %F A157013 e(n,k,m)= (k+m)*e(n-1, k, m) + (n-k+1-m)*e(n-1, k-1, m) with m=3. %F A157013 T(n, k) = (k+2)*T(n-1, k) + (n-k-1)*T(n-1, k-1) with T(n,1) = 1, T(n,n) = (-1)^(n-1). - _G. C. Greubel_, Feb 22 2019 %e A157013 Triangle begins with: %e A157013 1. %e A157013 1, -1. %e A157013 1, -4, 1. %e A157013 1, -15, 5, -1. %e A157013 1, -58, 10, -6, 1. %e A157013 1, -229, -66, -26, 7, -1. %e A157013 1, -912, -1017, -288, 23, -8, 1. %e A157013 1, -3643, -8733, -4779, -415, -41, 9, -1. %e A157013 1, -14566, -61880, -63606, -17242, -1158, 40, -10, 1. %e A157013 1, -58257, -396796, -691036, -375118, -60990, -1956, -60, 11, -1. %t A157013 e[n_, 0, m_]:= 1; %t A157013 e[n_, k_, m_]:= 0 /; k >= n; %t A157013 e[n_, k_, m_]:= (k+m)*e[n-1, k, m] + (n-k+1-m)*e[n-1, k-1, m]; %t A157013 Table[Flatten[Table[Table[e[n, k, m], {k,0,n-1}], {n,1,10}]], {m,0,10}] %t A157013 T[n_,1]:=1; T[n_,n_]:=(-1)^(n-1); T[n_,k_]:= T[n,k] = (k+2)*T[n-1,k] + (n-k-1)*T[n-1,k-1]; Table[T[n,k], {n,1,10}, {k,1,n}]//Flatten (* _G. C. Greubel_, Feb 22 2019 *) %o A157013 (PARI) {T(n, k) = if(k==1, 1, if(k==n, (-1)^(n-1), (k+2)*T(n-1, k) + (n-k-1)* T(n-1, k-1)))}; %o A157013 for(n=1, 10, for(k=1, n, print1(T(n, k), ", "))) \\ _G. C. Greubel_, Feb 22 2019 %o A157013 (Sage) %o A157013 def T(n, k): %o A157013 if (k==1): return 1 %o A157013 elif (k==n): return (-1)^(n-1) %o A157013 else: return (k+2)*T(n-1, k) + (n-k-1)* T(n-1, k-1) %o A157013 [[T(n, k) for k in (1..n)] for n in (1..10)] # _G. C. Greubel_, Feb 22 2019 %Y A157013 Cf. A008517. %Y A157013 Cf. A157011 (m=0), A008292 (m=1), A157012 (m=2), this sequence (m=3). %K A157013 sign,tabl %O A157013 1,5 %A A157013 _Roger L. Bagula_, Feb 21 2009