This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157015 #19 Sep 06 2018 04:45:22 %S A157015 0,1,2,3,8,18,60,232,1389,14174,291396,12307993,1031244083, %T A157015 166112993730,50667178220215,29104660317374991,31455540471012663839, %U A157015 64032442292149795841796,245999865227419158171980939,1787823661072649054474456291897,24639596830978183991220162941946112 %N A157015 Number of graphs with n vertices having a bipartite connected component. %H A157015 Andrew Howroyd, <a href="/A157015/b157015.txt">Table of n, a(n) for n = 0..50</a> %H A157015 Tanya Khovanova, <a href="http://blog.tanyakhovanova.com/?p=109">Can Someone Be Straight?</a> [From _Tanya Khovanova_, Sep 23 2009] %F A157015 a(n) = A000088(n) - A157016(n). %t A157015 cbs[g_] := Or @@ Map[BipartiteQ, Map[InduceSubgraph[g, # ] &, ConnectedComponents[g]]] Table[Count[Map[cbs, ListGraphs[n]], True], {n, 7}] %t A157015 (* from _Eric W. Weisstein_, May 02 2009: *) First do: <<Combinatorica %t A157015 In[2]:= Table[Count[Graphs[n], _?(Function[g, %t A157015 Or @@ BipartiteQ /@ (InduceSubgraph[g, # ] & /@ %t A157015 ConnectedComponents[g])])], {n, 8}] // Timing %K A157015 nonn %O A157015 0,3 %A A157015 _Tanya Khovanova_, Feb 21 2009 %E A157015 Incorrect comment deleted by _N. J. A. Sloane_, Feb 22 2009 %E A157015 Terms from a(8) onwards from _Max Alekseyev_, Feb 22 2009 %E A157015 Offset corrected by _Max Alekseyev_, Feb 24 2009 %E A157015 a(8) corrected by _W. Edwin Clark_, May 02 2009; confirmed by _Eric W. Weisstein_ %E A157015 Corrected by _Max Alekseyev_ and _Vladeta Jovovic_, May 02 2009 %E A157015 a(18)-a(20) from _Max Alekseyev_, Jun 24 2013