This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157019 #33 May 20 2021 10:55:36 %S A157019 1,2,2,4,2,8,2,10,8,12,2,34,2,16,32,38,2,62,2,92,58,24,2,210,72,28,92, %T A157019 198,2,394,2,274,134,36,422,776,2,40,184,1142,2,1178,2,618,1232,48,2, %U A157019 2634,926,1482,308,964,2,2972,2004,4610,382,60,2,8576,2,64,6470,5130 %N A157019 a(n) = Sum_{d|n} binomial(n/d+d-2, d-1). %C A157019 Equals row sums of triangle A156348. - _Gary W. Adamson_ & _Mats Granvik_, Feb 21 2009 %C A157019 a(n) = 2 iff n is prime. %C A157019 The binomial transform (note the offset) is 0, 1, 4, 11, 28, 67, 156, 359, 818, 1847, 4146, 9275, ... - _R. J. Mathar_, Mar 03 2013 %C A157019 a(n) is the number of distinct paths that connect the starting (1,1) point to the hyperbola with equation (x * y = n), when the choice for a move is constrained to belong to { (x := x + 1), (y := y + 1) }. - _Luc Rousseau_, Jun 27 2017 %H A157019 Seiichi Manyama, <a href="/A157019/b157019.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Paul D. Hanna) %F A157019 G.f.: A(x) = Sum_{n>=1} x^n/(1 - x^n)^n. - _Paul D. Hanna_, Mar 01 2009 %F A157019 a(n) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 2, gcd(n,k) - 1) / phi(n/gcd(n,k)) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 2, n/gcd(n,k) - 1) / phi(n/gcd(n,k)) where phi = A000010. - _Richard L. Ollerton_, May 19 2021 %e A157019 a(4) = 4 = 1 + 2 + 0 + 1. %p A157019 A157019 := proc(n) add( binomial(n/d+d-2, d-1), d=numtheory[divisors](n) ) ; end: %t A157019 a[n_] := Sum[Binomial[n/d + d - 2, d - 1], {d, Divisors[n]}]; %t A157019 Array[a, 100] (* _Jean-François Alcover_, Mar 24 2020 *) %o A157019 (PARI) {a(n)=polcoeff(sum(m=1,n,x^m/(1-x^m+x*O(x^n))^m),n)} \\ _Paul D. Hanna_, Mar 01 2009 %Y A157019 Cf. A081543, A018818, A156838 (Mobius transform). %Y A157019 Cf. A156348. %Y A157019 Cf. A000010. %K A157019 easy,nonn %O A157019 1,2 %A A157019 _R. J. Mathar_, Feb 21 2009