This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157029 #8 Mar 26 2018 20:21:39 %S A157029 1,3,7,17,39,89,203,459,1029,2299,5129,11409,25273,55787,122875, %T A157029 270239,593331,1299883,2841243,6197855,13499235,29366411,63809311, %U A157029 138466835,300036895,649186659,1402796793,3027908077,6529611587,14068804905 %N A157029 A007318 * A157019. %C A157029 Equals row sums of triangle A157028. %F A157029 G.f.: Sum_{n>=1} x^n * (1-x)^(n*(n-1)) / ((1-x)^n - x^n)^n. - _Paul D. Hanna_, Mar 26 2018 %F A157029 G.f.: Sum_{n>=1} x^n/(1-x)^n / (1 - x^n/(1-x)^n)^n. - _Paul D. Hanna_, Mar 26 2018 %e A157029 a(4) = 17 = (1, 3, 3, 1) dot (1, 2, 2, 4) = (1 + 6 + 6 + 4). a(4) = 17 = sum of row 4 terms, triangle A157028: (8 + 5 + 3 + 1). %e A157029 G.f.: A(x) = x + 3*x^2 + 7*x^3 + 17*x^4 + 39*x^5 + 89*x^6 + 203*x^7 + 459*x^8 + 1029*x^9 + 2299*x^10 + ... %e A157029 such that %e A157029 A(x) = x/((1-x) - x) + x^2*(1-x)^2/((1-x)^2 - x^2)^2 + x^3*(1-x)^6/((1-x)^3 - x^3)^3 + x^4*(1-x)^12/((1-x)^4 - x^4)^4 + x^5*(1-x)^20/((1-x)^5 - x^5)^5 + ... %Y A157029 Cf. A157019, A157028, A156348 %K A157029 nonn %O A157029 1,2 %A A157029 _Gary W. Adamson_ & _Mats Granvik_, Feb 21 2009 %E A157029 Extended by _R. J. Mathar_, Apr 07 2009