This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157101 #12 Sep 08 2022 08:45:41 %S A157101 1,-1,-5,-4,29,129,-65,-3689,-16264,113689,2382785,7001471,-398035821, %T A157101 -7911171596,43244638645,6480598259201,124106986093951, %U A157101 -5987117709349201,-541051130050800400,-4830209396684261199 %N A157101 A Somos-4 variant. %C A157101 Hankel transform of A157100. %H A157101 G. C. Greubel, <a href="/A157101/b157101.txt">Table of n, a(n) for n = 0..145</a> %H A157101 Paul Barry, <a href="https://arxiv.org/abs/1910.00875">Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials</a>, arXiv:1910.00875 [math.CO], 2019. %F A157101 a(n) = (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4), with a(0)=1, a(1)=-1, a(2)=-5, a(3)=-4. %F A157101 a(n) = A051138(n+1) for all n in Z. - _Michael Somos_, Jul 17 2016 %t A157101 RecurrenceTable[{a[n]==(a[n-1]*a[n-3]+a[n-2]^2)/a[n-4], a[0]==1, a[1]==-1, a[2]==-5, a[3]==-4}, a, {n,20}] (* _G. C. Greubel_, Feb 23 2019 *) %o A157101 (PARI) m=20; v=concat([1,-1,-5,-4], vector(m-4)); for(n=5, m, v[n] = (v[n-1]*v[n-3] +v[n-2]^2)/v[n-4]); v \\ _G. C. Greubel_, Feb 23 2019 %o A157101 (Magma) I:=[1,-1,-5,-4]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + Self(n-2)^2)/Self(n-4): n in [1..20]]; // _G. C. Greubel_, Feb 23 2019 %o A157101 (Sage) %o A157101 def a(n): %o A157101 if (n==0): return 1 %o A157101 elif (n==1): return -1 %o A157101 elif (n==2): return -5 %o A157101 elif (n==3): return -4 %o A157101 else: return (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4) %o A157101 [a(n) for n in (0..20)] # _G. C. Greubel_, Feb 23 2019 %o A157101 (GAP) a:=[1,-1,-5,-4];; for n in [5..20] do a[n]:=(a[n-1]*a[n-3] + a[n-2]^2)/a[n-4]; od; a; # _G. C. Greubel_, Feb 23 2019 %Y A157101 Cf. A051138. %Y A157101 Cf. A157005, A162546, A162547. %K A157101 easy,sign %O A157101 0,3 %A A157101 _Paul Barry_, Feb 22 2009