cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157103 Array A(n, k) = Fibonacci(n+1, k), with A(n, 0) = A(n, n) = 1, read by antidiagonals.

This page as a plain text file.
%I A157103 #23 Jan 05 2025 19:51:39
%S A157103 1,1,1,1,1,1,1,2,2,1,1,3,5,3,1,1,5,12,10,4,1,1,8,29,33,17,5,1,1,13,70,
%T A157103 109,72,26,6,1,1,21,169,360,305,135,37,7,1,1,34,408,1189,1292,701,228,
%U A157103 50,8,1,1,55,985,3927,5473,3640,1405,357,65,9,1
%N A157103 Array A(n, k) = Fibonacci(n+1, k), with A(n, 0) = A(n, n) = 1, read by antidiagonals.
%C A157103 From _Michael A. Allen_, Mar 30 2023: (Start)
%C A157103 Column k is the k-metallonacci sequence for k > 0.
%C A157103 T(n,k) is, for n > 0 and k > 0, the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are k kinds of squares available. (End)
%H A157103 G. C. Greubel, <a href="/A157103/b157103.txt">Antidiagonals n = 0..50, flattened</a>
%H A157103 Michael A. Allen and Kenneth Edwards, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/60-5/allen.pdf">Fence tiling derived identities involving the metallonacci numbers squared or cubed</a>, Fib. Q. 60:5 (2022) 5-17.
%H A157103 Michelle Rudolph-Lilith, <a href="http://arxiv.org/abs/1508.07894">On the Product Representation of Number Sequences, with Application to the Fibonacci Family</a>, arXiv preprint arXiv:1508.07894 [math.NT], 2015. See Table 3.
%F A157103 A(n, k) = Fibonacci(n+1, k), with A(n, 0) = A(n, n) = 1 (array).
%F A157103 A(n, 1) = A000045(n+1).
%F A157103 T(n, k) = k*T(n-1, k) + T(n-2, k) with T(n, 0) = T(n, n) = 1 (triangle).
%F A157103 From _G. C. Greubel_, Jan 11 2022: (Start)
%F A157103 T(n, k) = Fibonacci(n-k+1, k), with T(n, 0) = T(n, n) = 1.
%F A157103 T(2*n, n) = A084845(n) for n >= 1, with T(0, 0) = 1.
%F A157103 T(2*n+1, n+1) = A084844(n). (End)
%e A157103 Array begins:
%e A157103   1,  1,   1,    1,     1,     1,      1,      1, ... (A000012);
%e A157103   1,  1,   2,    3,     4,     5,      6,      7, ... (A000027);
%e A157103   1,  2,   5,   10,    17,    26,     37,     50, ... (A002522);
%e A157103   1,  3,  12,   33,    72,   135,    228,    357, ...;
%e A157103   1,  5,  29,  109,   305,   701,   1405,   2549, ...;
%e A157103   1,  8,  70,  360,  1292,  3640,   8658,  18200, ...;
%e A157103   1, 13, 169, 1189,  5473, 18901,  53353, 129949, ...;
%e A157103   1, 21, 408, 3927, 23184, 98145, 328776, 927843, ...;
%e A157103   ...
%e A157103 First few rows of the triangle:
%e A157103   1;
%e A157103   1,   1;
%e A157103   1,   1,    1;
%e A157103   1,   2,    2,     1;
%e A157103   1,   3,    5,     3,     1;
%e A157103   1,   5,   12,    10,     4,     1;
%e A157103   1,   8,   29,    33,    17,     5,     1;
%e A157103   1,  13,   70,   109,    72,    26,     6,     1;
%e A157103   1,  21,  169,   360,   305,   135,    37,     7,    1;
%e A157103   1,  34,  408,  1189,  1292,   701,   228,    50,    8,   1;
%e A157103   1,  55,  985,  3927,  5473,  3640,  1405,   357,   65,   9,   1;
%e A157103   1,  89, 2378, 12970, 23184, 18901,  8658,  2549,  528,  82,  10,  1;
%e A157103   1, 144, 5741, 42837, 98209, 98145, 53353, 18200, 4289, 747, 101, 11, 1;
%e A157103   ...
%e A157103 Example: Column 3 = (1, 3, 10, 33, 109, 360, ...) = A006190.
%p A157103 A157103 := proc(n,k)
%p A157103     if k = 0 then
%p A157103         1;
%p A157103     else
%p A157103         mul(k-2*I*cos(l*Pi/(n+1)),l=1..n) ;
%p A157103         combine(%,trig) ;
%p A157103         round(%) ;
%p A157103     end if;
%p A157103 end proc:
%p A157103 seq( seq(A157103(d-k,k),k=0..d),d=0..12) ; # _R. J. Mathar_, Feb 27 2023
%t A157103 (* First program *)
%t A157103 T[_, 0]=1; T[n_, n_]=1; T[_, _]=0;
%t A157103 T[n_, k_] /; 0 <= k <= n := k T[n-1, k] + T[n-2, k];
%t A157103 Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* _Jean-François Alcover_, Aug 07 2018 *)
%t A157103 (* Second program *)
%t A157103 T[n_, k_]:= If[k==0 || k==n, 1, Fibonacci[n-k+1, k]];
%t A157103 Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jan 11 2022 *)
%o A157103 (Magma)
%o A157103 A157103:= func< n,k | k eq 0 or k eq n select 1 else Evaluate(DicksonSecond(n, -1), k) >;
%o A157103 [A157103(n-k, k): k in [0..n], n in [0..15]]; // _G. C. Greubel_, Jan 11 2022
%o A157103 (Sage)
%o A157103 def A157103(n,k): return 1 if (k==0 or k==n) else lucas_number1(n+1, k, -1)
%o A157103 flatten([[A157103(n-k, k) for k in (0..n)] for n in (0..10)]) # _G. C. Greubel_, Jan 11 2022
%Y A157103 Columns k=1 to 9: A000045, A000129, A006190, A001076, A052918, A005668, A054413, A041025, A099371.
%Y A157103 Cf. A084844, A084845.
%Y A157103 Essentially the transpose of A073133, A172236, A352361.
%K A157103 nonn,easy,tabl
%O A157103 0,8
%A A157103 _Gary W. Adamson_, Feb 22 2009
%E A157103 Edited by _G. C. Greubel_, Jan 11 2022