This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157125 #11 Oct 05 2024 16:31:25 %S A157125 1,-1,-1,0,2,1,-1,-4,-2,4,12,4,-20,-39,3,92,118,-84,-388,-308,596, %T A157125 1528,508,-3292,-5556,1154,16034,17940,-18160,-71243,-45913,127124, %U A157125 290278,46128,-710864,-1067564,485108,3504680,3362756,-4957812,-15669148 %N A157125 A transform of the Catalan numbers. %C A157125 Hankel transform is A157126. Partial sums are A157127. %F A157125 G.f.: (1-x)*(sqrt(1+x^2+4*x^3)-sqrt(1+x^2))/(2*x^3*sqrt(1+x^2)); %F A157125 a(n) = Sum_{k=0..n} (-1)^binomial(n-k+1,2)*binomial(floor((n-k)/2),k)*A000108(k). %F A157125 Conjecture: (n+3)*(n-2)*a(n) -4*a(n-1) +2*(n^2-n-4)*a(n-2) +2*(2*n^2-7*n+2)*a(n-3) +(n+1)*(n-4)*a(n-4) +2*(n-1)*(2*n-7)*a(n-5)=0. - _R. J. Mathar_, Nov 15 2012 %Y A157125 Cf. A000108, A157126, A157127. %K A157125 easy,sign %O A157125 0,5 %A A157125 _Paul Barry_, Feb 23 2009 %E A157125 Divisor x^3 inserted in the g.f. - _R. J. Mathar_, Feb 06 2015