cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157136 G.f. satisfies: A(x) = Sum_{n>=0} x^(n^2) * A(x)^(n^2).

This page as a plain text file.
%I A157136 #14 Apr 28 2018 18:14:01
%S A157136 1,1,1,1,2,6,16,36,75,164,401,1046,2718,6878,17200,43486,112202,
%T A157136 293540,770535,2019891,5296670,13942944,36902130,98097968,261456388,
%U A157136 697970447,1866383507,5001333169,13432923544,36154294520,97475330092,263188299372
%N A157136 G.f. satisfies: A(x) = Sum_{n>=0} x^(n^2) * A(x)^(n^2).
%C A157136 Apparently: Number of Dyck n-paths with each ascent length being a square number. [_David Scambler_, May 09 2012]
%F A157136 G.f. satisfies: A(x) = B(x*A(x)) where B(x) = A(x/B(x)) = Sum_{n>=0} x^(n^2),
%F A157136 where a(n) = [x^n] B(x)^(n+1)/(n+1) for n>=0.
%F A157136 G.f.: A(x) = (1/x)*Series_Reversion( x / Sum_{n>=0} x^(n^2) ).
%F A157136 From _Paul D. Hanna_, Apr 24 2010: (Start)
%F A157136 SPECIAL VALUES:
%F A157136 . at x = 2*exp(-Pi)/(1+Pi^(1/4)/gamma(3/4)) = 0.04142369369176926261...
%F A157136 . A(x) = B(exp(-Pi)) = (1+Pi^(1/4)/gamma(3/4))/2 = 1.043217405606654...
%F A157136 RADIUS OF CONVERGENCE r:
%F A157136 . at r = 0.3529672118496605771445592553666318566205464502456806...,
%F A157136 . A(r) = 1.9530374869760035836323161721583051467541841357702661...,
%F A157136 where r and A(r) are given by:
%F A157136 . r = z/B(z) and
%F A157136 . A(r) = B(z) = Sum_{n>=0} z^(n^2)
%F A157136 such that z is the real root nearest the origin that satisfies:
%F A157136 . B(z) - z*B'(z) = 0, which has solution:
%F A157136 . z = 0.689358196415787767209694723600383373645983284157633311584643...
%F A157136 Here, B(z) = Sum_{n>=0} z^(n^2), the partial Jacobi theta_3 function.
%F A157136 (End)
%e A157136 G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 6*x^5 + 16*x^6 + 36*x^7 +...
%e A157136 A(x)^4 = 1 + 4*x + 10*x^2 + 20*x^3 + 39*x^4 + 88*x^5 + 228*x^6 +...
%e A157136 A(x)^9 = 1 + 9*x + 45*x^2 + 165*x^3 + 504*x^4 + 1404*x^5 +...
%e A157136 A(x)^16 = 1 + 16*x + 136*x^2 + 816*x^3 + 3892*x^4 + 15824*x^5 +...
%e A157136 where
%e A157136 A(x) = 1 + x*A(x) + x^4*A(x)^4 + x^9*A(x)^9 + x^16*A(x)^16 +...
%e A157136 A(x) = (1/x)*Series_Reversion(x/(1 + x + x^4 + x^9 + x^16 +...)).
%t A157136 f[x_, y_, d_] := f[x, y, d] = If[x < 0 || y < x, 0, If[x == 0 && y == 0, 1, f[x-1, y, 0] + f[x, y - If[d == 0, 1, Sqrt[d]*2 + 1], If[d == 0, 1, Sqrt[d]*2 + 1 + d]]]]; Table[f[n, n, 0], {n, 0, 31}] (* _David Scambler_, May 09 2012 *)
%o A157136 (PARI) {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=sum(m=0,sqrtint(n),x^(m^2)*A^(m^2)));polcoeff(A,n)}
%o A157136 (PARI) seq(n)={Vec(serreverse(x/(1 + sum(i=1, sqrtint(n), x^(i^2))) + O(x*x^n)))} \\ _Andrew Howroyd_, Apr 28 2018
%Y A157136 Cf. A157133, A157134, A157135.
%K A157136 nonn
%O A157136 0,5
%A A157136 _Paul D. Hanna_, Feb 24 2009