This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157148 #12 Jan 10 2022 03:07:10 %S A157148 1,1,1,1,8,1,1,33,33,1,1,112,394,112,1,1,353,3150,3150,353,1,1,1080, %T A157148 20719,51192,20719,1080,1,1,3265,122535,620415,620415,122535,3265,1,1, %U A157148 9824,681040,6312360,12805614,6312360,681040,9824,1,1,29505,3643980,57451300,209503086,209503086,57451300,3643980,29505,1 %N A157148 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 2, read by rows. %H A157148 G. C. Greubel, <a href="/A157148/b157148.txt">Rows n = 0..50 of the triangle, flattened</a> %F A157148 T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 2. %F A157148 T(n, n-k, 2) = T(n, k, 2). %e A157148 Triangle begins as: %e A157148 1; %e A157148 1, 1; %e A157148 1, 8, 1; %e A157148 1, 33, 33, 1; %e A157148 1, 112, 394, 112, 1; %e A157148 1, 353, 3150, 3150, 353, 1; %e A157148 1, 1080, 20719, 51192, 20719, 1080, 1; %e A157148 1, 3265, 122535, 620415, 620415, 122535, 3265, 1; %e A157148 1, 9824, 681040, 6312360, 12805614, 6312360, 681040, 9824, 1; %e A157148 1, 29505, 3643980, 57451300, 209503086, 209503086, 57451300, 3643980, 29505, 1; %p A157148 A157148 := proc(n,k) %p A157148 option remember; %p A157148 if k < 0 or k> n then 0; %p A157148 elif k = 0 or k = n then 1; %p A157148 else (2*(n-k)+1)*procname(n-1,k-1) + (2*k+1)*procname(n-1,k) + 2*k*(n-k)*procname(n-2,k-1); %p A157148 end if; %p A157148 end proc: %p A157148 seq(seq(A157148(n,k),k=0..n),n=0..10) ; # _R. J. Mathar_, Feb 06 2015 %t A157148 T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*k*(n-k)*T[n-2,k-1,m]]; %t A157148 Table[T[n,k,2], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jan 09 2022 *) %o A157148 (Sage) %o A157148 @CachedFunction %o A157148 def T(n,k,m): # A157148 %o A157148 if (k==0 or k==n): return 1 %o A157148 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m) %o A157148 flatten([[T(n,k,2) for k in (0..n)] for n in (0..20)]) # _G. C. Greubel_, Jan 09 2022 %Y A157148 Cf. A007318 (m=0), A157147 (m=1), this sequence (m=2), A157149 (m=3), A157150 (m=4), A157151 (m=5). %Y A157148 Cf. A157152, A157153, A157154, A157155, A157156, A157207, A157208, A157209, A157210, A157211, A157212, A157268, A157272, A157273, A157274, A157275. %K A157148 nonn,tabl,easy %O A157148 0,5 %A A157148 _Roger L. Bagula_, Feb 24 2009 %E A157148 Edited by _G. C. Greubel_, Jan 09 2022