This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157149 #12 Jan 10 2022 03:07:00 %S A157149 1,1,1,1,11,1,1,57,57,1,1,247,930,247,1,1,1013,10006,10006,1013,1,1, %T A157149 4083,89139,225230,89139,4083,1,1,16369,719691,3771323,3771323,719691, %U A157149 16369,1,1,65519,5495836,53239541,108865438,53239541,5495836,65519,1 %N A157149 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 3, read by rows. %H A157149 G. C. Greubel, <a href="/A157149/b157149.txt">Rows n = 0..50 of the triangle, flattened</a> %F A157149 T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 3. %F A157149 T(n, n-k, 3) = T(n, k, 3). %F A157149 T(n, 1, 3) = A289255(n). - _G. C. Greubel_, Jan 09 2022 %e A157149 Triangle begins as: %e A157149 1; %e A157149 1, 1; %e A157149 1, 11, 1; %e A157149 1, 57, 57, 1; %e A157149 1, 247, 930, 247, 1; %e A157149 1, 1013, 10006, 10006, 1013, 1; %e A157149 1, 4083, 89139, 225230, 89139, 4083, 1; %e A157149 1, 16369, 719691, 3771323, 3771323, 719691, 16369, 1; %e A157149 1, 65519, 5495836, 53239541, 108865438, 53239541, 5495836, 65519, 1; %p A157149 A157149 := proc(n,k) %p A157149 option remember; %p A157149 if k < 0 or k> n then 0; %p A157149 elif k = 0 or k = n then 1; %p A157149 else (3*(n-k)+1)*procname(n-1,k-1) + (3*k+1)*procname(n-1,k) + 3*k*(n-k)*procname(n-2,k-1); %p A157149 end if; %p A157149 end proc: %p A157149 seq(seq(A157149(n,k),k=0..n),n=0..10) ; # _R. J. Mathar_, Feb 06 2015 %t A157149 T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*k*(n-k)*T[n-2,k-1,m]]; %t A157149 Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jan 09 2022 *) %o A157149 (Sage) %o A157149 @CachedFunction %o A157149 def T(n,k,m): # A157149 %o A157149 if (k==0 or k==n): return 1 %o A157149 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m) %o A157149 flatten([[T(n,k,3) for k in (0..n)] for n in (0..20)]) # _G. C. Greubel_, Jan 09 2022 %Y A157149 Cf. A007318 (m=0), A157147 (m=1), A157148 (m=2), this sequence (m=3), A157150 (m=4), A157151 (m=5). %Y A157149 Cf. A157152, A157153, A157154, A157155, A157156, A157207, A157208, A157209, A157210, A157211, A157212, A157268, A157272, A157273, A157274, A157275. %Y A157149 Cf. A289255. %K A157149 nonn,tabl,easy %O A157149 0,5 %A A157149 _Roger L. Bagula_, Feb 24 2009 %E A157149 Edited by _G. C. Greubel_, Jan 09 2022