This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157152 #13 Jan 10 2022 03:06:06 %S A157152 1,1,1,1,3,1,1,7,7,1,1,15,30,15,1,1,31,108,108,31,1,1,63,359,594,359, %T A157152 63,1,1,127,1145,2875,2875,1145,127,1,1,255,3568,12985,19246,12985, %U A157152 3568,255,1,1,511,10966,56306,116640,116640,56306,10966,511,1 %N A157152 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 1, read by rows. %H A157152 G. C. Greubel, <a href="/A157152/b157152.txt">Rows n = 0..50 of the triangle, flattened</a> %F A157152 T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 5. %F A157152 T(n, n-k, m) = T(n, k, m). %F A157152 T(n, 1, 1) = A000225(n). - _G. C. Greubel_, Jan 09 2022 %e A157152 Triangle begins as: %e A157152 1; %e A157152 1, 1; %e A157152 1, 3, 1; %e A157152 1, 7, 7, 1; %e A157152 1, 15, 30, 15, 1; %e A157152 1, 31, 108, 108, 31, 1; %e A157152 1, 63, 359, 594, 359, 63, 1; %e A157152 1, 127, 1145, 2875, 2875, 1145, 127, 1; %e A157152 1, 255, 3568, 12985, 19246, 12985, 3568, 255, 1; %e A157152 1, 511, 10966, 56306, 116640, 116640, 56306, 10966, 511, 1; %e A157152 1, 1023, 33417, 238024, 665702, 918530, 665702, 238024, 33417, 1023, 1; %t A157152 T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]]; %t A157152 Table[T[n,k,1], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jan 09 2022 *) %o A157152 (Sage) %o A157152 @CachedFunction %o A157152 def T(n,k,m): # A157152 %o A157152 if (k==0 or k==n): return 1 %o A157152 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m) %o A157152 flatten([[T(n,k,1) for k in (0..n)] for n in (0..20)]) # _G. C. Greubel_, Jan 09 2022 %Y A157152 Cf. A007318 (m=0), this sequence (m=1), A157153 (m=2), A157154 (m=3), A157155 (m=4), A157156 (m=5). %Y A157152 Cf. A157147, A157148, A157149, A157150, A157151, A157207, A157208, A157209, A157210, A157211, A157212, A157268, A157272, A157273, A157274, A157275. %K A157152 nonn,tabl,easy %O A157152 0,5 %A A157152 _Roger L. Bagula_, Feb 24 2009 %E A157152 Edited by _G. C. Greubel_, Jan 09 2022