This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157154 #10 Jan 10 2022 13:28:22 %S A157154 1,1,1,1,5,1,1,21,21,1,1,85,234,85,1,1,341,2110,2110,341,1,1,1365, %T A157154 17163,35882,17163,1365,1,1,5461,131751,505979,505979,131751,5461,1,1, %U A157154 21845,976876,6395471,11433118,6395471,976876,21845,1,1,87381,7089360,75400800,220599330,220599330,75400800,7089360,87381,1 %N A157154 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 3, read by rows. %H A157154 G. C. Greubel, <a href="/A157154/b157154.txt">Rows n = 0..50 of the triangle, flattened</a> %F A157154 T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 1. %F A157154 T(n, n-k, m) = T(n, k, m). %F A157154 T(n, 1, 3) = A002450(n). - _G. C. Greubel_, Jan 10 2022 %e A157154 Triangle begins as: %e A157154 1; %e A157154 1, 1; %e A157154 1, 5, 1; %e A157154 1, 21, 21, 1; %e A157154 1, 85, 234, 85, 1; %e A157154 1, 341, 2110, 2110, 341, 1; %e A157154 1, 1365, 17163, 35882, 17163, 1365, 1; %e A157154 1, 5461, 131751, 505979, 505979, 131751, 5461, 1; %e A157154 1, 21845, 976876, 6395471, 11433118, 6395471, 976876, 21845, 1; %e A157154 1, 87381, 7089360, 75400800, 220599330, 220599330, 75400800, 7089360, 87381, 1; %t A157154 T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]]; %t A157154 Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jan 10 2022 *) %o A157154 (Sage) %o A157154 @CachedFunction %o A157154 def T(n,k,m): # A157154 %o A157154 if (k==0 or k==n): return 1 %o A157154 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m) %o A157154 flatten([[T(n,k,3) for k in (0..n)] for n in (0..20)]) # _G. C. Greubel_, Jan 10 2022 %Y A157154 Cf. A007318 (m=0), A157152 (m=1), A157153 (m=2), this sequence (m=3), A157155 (m=4), A157156 (m=5). %Y A157154 Cf. A157147, A157148, A157149, A157150, A157151, A157207, A157208, A157209, A157210, A157211, A157212, A157268, A157272, A157273, A157274, A157275. %Y A157154 Cf. A002450. %K A157154 nonn,tabl,easy %O A157154 0,5 %A A157154 _Roger L. Bagula_, Feb 24 2009 %E A157154 Edited by _G. C. Greubel_, Jan 10 2022