This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157155 #6 Jan 10 2022 16:38:41 %S A157155 1,1,1,1,6,1,1,31,31,1,1,156,462,156,1,1,781,5442,5442,781,1,1,3906, %T A157155 57263,124860,57263,3906,1,1,19531,566153,2335435,2335435,566153, %U A157155 19531,1,1,97656,5396164,38814088,71413750,38814088,5396164,97656,1 %N A157155 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 4, read by rows. %H A157155 G. C. Greubel, <a href="/A157155/b157155.txt">Rows n = 0..50 of the triangle, flattened</a> %F A157155 T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 4. %F A157155 T(n, n-k, m) = T(n, k, m). %F A157155 T(n, 1, 4) = A003463(n). - _G. C. Greubel_, Jan 10 2022 %e A157155 Triangle begins as: %e A157155 1; %e A157155 1, 1; %e A157155 1, 6, 1; %e A157155 1, 31, 31, 1; %e A157155 1, 156, 462, 156, 1; %e A157155 1, 781, 5442, 5442, 781, 1; %e A157155 1, 3906, 57263, 124860, 57263, 3906, 1; %e A157155 1, 19531, 566153, 2335435, 2335435, 566153, 19531, 1; %e A157155 1, 97656, 5396164, 38814088, 71413750, 38814088, 5396164, 97656, 1; %t A157155 T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]]; %t A157155 Table[T[n,k,4], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jan 10 2022 *) %o A157155 (Sage) %o A157155 @CachedFunction %o A157155 def T(n,k,m): # A157155 %o A157155 if (k==0 or k==n): return 1 %o A157155 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m) %o A157155 flatten([[T(n,k,4) for k in (0..n)] for n in (0..20)]) # _G. C. Greubel_, Jan 10 2022 %Y A157155 Cf. A007318 (m=0), A157152 (m=1), A157153 (m=2), A157154 (m=3), this sequence (m=4), A157156 (m=5). %Y A157155 Cf. A157147, A157148, A157149, A157150, A157151, A157207, A157208, A157209, A157210, A157211, A157212, A157268, A157272, A157273, A157274, A157275. %Y A157155 Cf. A003463. %K A157155 nonn,tabl %O A157155 0,5 %A A157155 _Roger L. Bagula_, Feb 24 2009 %E A157155 Edited by _G. C. Greubel_, Jan 10 2022