This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157156 #6 Jan 10 2022 16:42:58 %S A157156 1,1,1,1,7,1,1,43,43,1,1,259,806,259,1,1,1555,11720,11720,1555,1,1, %T A157156 9331,151215,338770,151215,9331,1,1,55987,1828221,7892635,7892635, %U A157156 1828221,55987,1,1,335923,21286168,162474781,304389070,162474781,21286168,335923,1 %N A157156 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 5, read by rows. %H A157156 G. C. Greubel, <a href="/A157156/b157156.txt">Rows n = 0..50 of the triangle, flattened</a> %F A157156 T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 5. %F A157156 T(n, n-k, m) = T(n, k, m). %F A157156 T(n, 1, 5) = A003464(n). - _G. C. Greubel_, Jan 10 2022 %e A157156 Triangle begins as: %e A157156 1; %e A157156 1, 1; %e A157156 1, 7, 1; %e A157156 1, 43, 43, 1; %e A157156 1, 259, 806, 259, 1; %e A157156 1, 1555, 11720, 11720, 1555, 1; %e A157156 1, 9331, 151215, 338770, 151215, 9331, 1; %e A157156 1, 55987, 1828221, 7892635, 7892635, 1828221, 55987, 1; %e A157156 1, 335923, 21286168, 162474781, 304389070, 162474781, 21286168, 335923, 1; %t A157156 T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]]; %t A157156 Table[T[n,k,5], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jan 10 2022 *) %o A157156 (Sage) %o A157156 @CachedFunction %o A157156 def T(n,k,m): # A157156 %o A157156 if (k==0 or k==n): return 1 %o A157156 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m) %o A157156 flatten([[T(n,k,5) for k in (0..n)] for n in (0..20)]) # _G. C. Greubel_, Jan 10 2022 %Y A157156 Cf. A007318 (m=0), A157152 (m=1), A157153 (m=2), A157154 (m=3), A157155 (m=4), A157156 (m=5). %Y A157156 Cf. A157147, A157148, A157149, A157150, A157151, A157207, A157208, A157209, A157210, A157211, A157212, A157268, A157272, A157273, A157274, A157275. %Y A157156 Cf. A003464. %K A157156 nonn,tabl %O A157156 0,5 %A A157156 _Roger L. Bagula_, Feb 24 2009 %E A157156 Edited by _G. C. Greubel_, Jan 10 2022