cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157161 Formal infinite product representation for the Catalan numbers (A000108) o.g.f. series.

This page as a plain text file.
%I A157161 #13 Aug 29 2019 08:53:47
%S A157161 1,2,3,11,25,79,245,869,2692,9544,32065,115381,400023,1462730,5165327,
%T A157161 19165035,68635477,255546242,930138521,3491772737,12810761323,
%U A157161 48334512920,178987624513,678272753284,2528210175630,9616904064021,36047930953482,137654448221760,518401146543811
%N A157161 Formal infinite product representation for the Catalan numbers (A000108) o.g.f. series.
%C A157161 (1-sqrt(1-4*x))/(2*x) = Sum_{k>=0} C(k)*x^k with C(n)=A000108(n) written as formal Product_{n>=1} (1 + a(n)*x^n).
%H A157161 W. Lang: <a href="/A147542/a147542.txt">Two recurrences for the general problem.</a>
%F A157161 Product_{n>=1} (1 + a(n)*x^n) = Sum_{k>=1} C(k)*x^k = (1-sqrt(1-4*x))/(2*x), with C(n)= A000108(n) (Catalan numbers).
%F A157161 Recurrence I: With FP(n,m) the set of partitions of n with m distinct parts (which could be called fermionic partitions (fp)):
%F A157161 a(n)= C(n) - sum(sum(product(a(k[j]),j=1..m), fp from FP(n,m)), m=2..maxm(n)), with maxm(n):=A003056(n) and the distinct parts k[j], j=1,...,m, of the partition fp of n, n>=3. Inputs a(1)=C(1)=1, a(2)=C(2)=2. See the array A008289(n,m) for the cardinality of the set FP(n,m).
%F A157161 Recurrence II: With P(n,m) the set of all partitions of n with m parts, and the multinomial numbers M0 (given for every partition under A048996):
%F A157161 a(n) = sum((d/n)*(-a(d)^(n/d)),d|n with 1<d<n) + sum(((-1)^(m-1))*(1/m)*sum(M0(p)*C(1)^e(1)*...*C(n)^e(n), p=(1^e(1),...,n^e(n)) from P(n,m)), m=1..n-1), n>=2; a(1)=C(1)=1. The exponents e(j)>=0 satisfy sum(j*e(j),j=1..n)=n and sum(e(j),j=1..m). If e_j=0 then part j does not appear. The M0 numbers are m!/product(e(j)!,j=1..n).
%F A157161 Recurrence II (rewritten, thanks to email from V. Jovovic, Mar 10 2009):
%F A157161 a(n)= (sum((d/n)*(-a(d))^(n/d),d|n with 1<=d<n) + (2*n-1)!/n!^2, n>=2; a(1)=1. Note that n*(2*n-1)!/n!^2 = A001700(n-1)= A088218(n), n>=1, with o.g.f. (d/dx)log(c(x)), where c(x) is the o.g.f. for Catalan numbers A000108. Here no partitions are needed.
%e A157161 Recurrence I: a(4) = C(4) - a(1)*a(3) = 14 - 1*3 = 11.
%e A157161 Recurrence II: a(4)= 2*(-1)^2 + (1*C(4)-(1/2)*(2*C(1)*C(3) + 1*C(2)^2) + (1/3)*3*C(1)^2*C(2)) = 2 + (14 - (10+4)/2 + 2) = 11.
%e A157161 Recurrence II (rewritten): a(4)= (1/4)*(-a(1))^4 + (1/2)*(-a(2))^2 + 7!/4!^2 = 11.
%Y A157161 Cf. A147542 (for Fibonacci numbers).
%K A157161 nonn,easy
%O A157161 1,2
%A A157161 _Wolfdieter Lang_ Aug 10 2009