This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157178 #2 Oct 12 2012 14:54:56 %S A157178 1,1,1,1,8,1,1,21,21,1,1,46,142,46,1,1,95,644,644,95,1,1,192,2439, %T A157178 5416,2439,192,1,1,385,8415,34879,34879,8415,385,1,1,770,27556,192286, %U A157178 358454,192286,27556,770,1,1,1539,87486,962090,3001044,3001044,962090,87486 %N A157178 A new general triangle sequence based on the Eulerian form in three parts:m=2; t0(n,k)=If[n*k == 0, 1, Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]] t(n,k,m)=If[n == 0, 1, ( m*(n - k) + 1)*t0(n - 1 + 1, k - 1) + (m*k + 1)*t0(n - 1 + 1, k) + m*k*(n - k)*t0(n - 2 + 1, k - 1)]. %C A157178 Row sums are: %C A157178 {1, 2, 10, 44, 236, 1480, 10680, 87360, 799680, 8104320, 90115200,...}. %C A157178 The m=1 of the general sequence is A008518. %F A157178 m=2; %F A157178 t0(n,k)=If[n*k == 0, 1, Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]]; %F A157178 t(n,k,m)=If[n == 0, 1, ( m*(n - k) + 1)*t0(n - 1 + 1, k - 1) + %F A157178 (m*k + 1)*t0(n - 1 + 1, k) + %F A157178 m*k*(n - k)*t0(n - 2 + 1, k - 1)]. %e A157178 {1}, %e A157178 {1, 1}, %e A157178 {1, 8, 1}, %e A157178 {1, 21, 21, 1}, %e A157178 {1, 46, 142, 46, 1}, %e A157178 {1, 95, 644, 644, 95, 1}, %e A157178 {1, 192, 2439, 5416, 2439, 192, 1}, %e A157178 {1, 385, 8415, 34879, 34879, 8415, 385, 1}, %e A157178 {1, 770, 27556, 192286, 358454, 192286, 27556, 770, 1}, %e A157178 {1, 1539, 87486, 962090, 3001044, 3001044, 962090, 87486, 1539, 1}, %e A157178 {1, 3076, 272485, 4517480, 21945914, 36637288, 21945914, 4517480, 272485, 3076, 1} %t A157178 Clear[t, n, k, m]; %t A157178 t[n_, k_, m_] = (m*(n - k) + 1)*Binomial[n - 1, k - 1] + (m*k + 1)*Binomial[n - 1, k] - m*k*(n - k)*Binomial[n - 2, k - 1]; %t A157178 Table[t[n, k, m], {m, 0, 10}, {n, 0, 10}, {k, 0, n}]; %t A157178 Table[Flatten[Table[Table[t[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 10}] %t A157178 Table[Table[Sum[t[n, k, m], {k, 0, n}], {n, 0, 10}], {m, 0, 10}]; %Y A157178 A008518 %K A157178 nonn,tabl %O A157178 0,5 %A A157178 _Roger L. Bagula_ and _Gary W. Adamson_, Feb 24 2009