This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157208 #7 Jan 10 2022 18:20:22 %S A157208 1,1,1,1,8,1,1,31,31,1,1,102,342,102,1,1,317,2548,2548,317,1,1,964, %T A157208 16001,37724,16001,964,1,1,2907,91877,423365,423365,91877,2907,1,1, %U A157208 8738,501032,4070208,7922362,4070208,501032,8738,1,1,26233,2647858,35556134,119460466,119460466,35556134,2647858,26233,1 %N A157208 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 2, read by rows. %H A157208 G. C. Greubel, <a href="/A157208/b157208.txt">Rows n = 0..50 of the triangle, flattened</a> %F A157208 T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 2. %F A157208 T(n, n-k, m) = T(n, k, m). %e A157208 Triangle begins as: %e A157208 1; %e A157208 1, 1; %e A157208 1, 8, 1; %e A157208 1, 31, 31, 1; %e A157208 1, 102, 342, 102, 1; %e A157208 1, 317, 2548, 2548, 317, 1; %e A157208 1, 964, 16001, 37724, 16001, 964, 1; %e A157208 1, 2907, 91877, 423365, 423365, 91877, 2907, 1; %e A157208 1, 8738, 501032, 4070208, 7922362, 4070208, 501032, 8738, 1; %t A157208 f[n_,k_]:= If[k<=Floor[n/2], k, n-k]; %t A157208 T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]]; %t A157208 Table[T[n,k,2], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jan 10 2022 *) %o A157208 (Sage) %o A157208 def f(n,k): return k if (k <= n//2) else n-k %o A157208 @CachedFunction %o A157208 def T(n,k,m): # A157208 %o A157208 if (k==0 or k==n): return 1 %o A157208 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m) %o A157208 flatten([[T(n,k,2) for k in (0..n)] for n in (0..20)]) # _G. C. Greubel_, Jan 10 2022 %Y A157208 Cf. A007318 (m=0), A157207 (m=1), this sequence (m=2), A157209 (m=3). %Y A157208 Cf. A157147, A157148, A157149, A157150, A157151, A157152, A157153, A157154, A157155, A157156, A157210, A157211, A157212, A157268, A157272, A157273, A157274, A157275. %K A157208 nonn,tabl %O A157208 0,5 %A A157208 _Roger L. Bagula_, Feb 25 2009 %E A157208 Edited by _G. C. Greubel_, Jan 10 2022