This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157209 #5 Jan 10 2022 18:21:24 %S A157209 1,1,1,1,11,1,1,54,54,1,1,229,822,229,1,1,932,8368,8368,932,1,1,3747, %T A157209 72066,174758,72066,3747,1,1,15010,570006,2759750,2759750,570006, %U A157209 15010,1,1,60065,4297714,37366190,73850596,37366190,4297714,60065,1,1,240288,31495488,460448520,1591033788,1591033788,460448520,31495488,240288,1 %N A157209 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 3, read by rows. %H A157209 G. C. Greubel, <a href="/A157209/b157209.txt">Rows n = 0..50 of the triangle, flattened</a> %F A157209 T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 3. %F A157209 T(n, n-k, m) = T(n, k, m). %e A157209 Triangle begins as: %e A157209 1; %e A157209 1, 1; %e A157209 1, 11, 1; %e A157209 1, 54, 54, 1; %e A157209 1, 229, 822, 229, 1; %e A157209 1, 932, 8368, 8368, 932, 1; %e A157209 1, 3747, 72066, 174758, 72066, 3747, 1; %e A157209 1, 15010, 570006, 2759750, 2759750, 570006, 15010, 1; %e A157209 1, 60065, 4297714, 37366190, 73850596, 37366190, 4297714, 60065, 1; %t A157209 f[n_,k_]:= If[k<=Floor[n/2], k, n-k]; %t A157209 T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]]; %t A157209 Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jan 10 2022 *) %o A157209 (Sage) %o A157209 def f(n,k): return k if (k <= n//2) else n-k %o A157209 @CachedFunction %o A157209 def T(n,k,m): # A157209 %o A157209 if (k==0 or k==n): return 1 %o A157209 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m) %o A157209 flatten([[T(n,k,3) for k in (0..n)] for n in (0..20)]) # _G. C. Greubel_, Jan 10 2022 %Y A157209 Cf. A007318 (m=0), A157207 (m=1), A157208 (m=2), this sequence (m=3). %Y A157209 Cf. A157147, A157148, A157149, A157150, A157151, A157152, A157153, A157154, A157155, A157156, A157210, A157211, A157212, A157268, A157272, A157273, A157274, A157275. %K A157209 nonn,tabl %O A157209 0,5 %A A157209 _Roger L. Bagula_, Feb 25 2009 %E A157209 Edited by _G. C. Greubel_, Jan 10 2022