This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157210 #8 Jan 11 2022 02:19:01 %S A157210 1,1,1,1,3,1,1,8,8,1,1,19,42,19,1,1,42,186,186,42,1,1,89,730,1362,730, %T A157210 89,1,1,184,2640,8540,8540,2640,184,1,1,375,9030,47810,79952,47810, %U A157210 9030,375,1,1,758,29722,246530,652460,652460,246530,29722,758,1 %N A157210 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 1, read by rows. %H A157210 G. C. Greubel, <a href="/A157210/b157210.txt">Rows n = 0..50 of the triangle, flattened</a> %F A157210 T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 1. %F A157210 T(n, n-k, m) = T(n, k, m). %F A157210 T(n, 1, 1) = A079583(n-1). - _G. C. Greubel_, Jan 10 2022 %e A157210 Triangle begins as: %e A157210 1; %e A157210 1, 1; %e A157210 1, 3, 1; %e A157210 1, 8, 8, 1; %e A157210 1, 19, 42, 19, 1; %e A157210 1, 42, 186, 186, 42, 1; %e A157210 1, 89, 730, 1362, 730, 89, 1; %e A157210 1, 184, 2640, 8540, 8540, 2640, 184, 1; %e A157210 1, 375, 9030, 47810, 79952, 47810, 9030, 375, 1; %e A157210 1, 758, 29722, 246530, 652460, 652460, 246530, 29722, 758, 1; %e A157210 1, 1525, 95238, 1196806, 4796770, 7429760, 4796770, 1196806, 95238, 1525, 1; %t A157210 f[n_,k_]:= If[k<=Floor[n/2], k, n-k]; %t A157210 T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*f[n,k]*T[n-2,k-1,m]]; %t A157210 Table[T[n,k,1], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jan 10 2022 *) %o A157210 (Sage) %o A157210 def f(n,k): return k if (k <= n//2) else n-k %o A157210 @CachedFunction %o A157210 def T(n,k,m): # A157210 %o A157210 if (k==0 or k==n): return 1 %o A157210 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*f(n,k)*T(n-2,k-1,m) %o A157210 flatten([[T(n,k,1) for k in (0..n)] for n in (0..20)]) # _G. C. Greubel_, Jan 10 2022 %Y A157210 Cf. A007318 (m=0), this sequence (m=1), A157211 (m=2), A157212 (m=3). %Y A157210 Cf. A157147, A157148, A157149, A157150, A157151, A157152, A157153, A157154, A157155, A157156, A157207, A157208, A157209, A157268, A157272, A157273, A157274, A157275. %Y A157210 Cf. A079583. %K A157210 nonn,tabl %O A157210 0,5 %A A157210 _Roger L. Bagula_, Feb 25 2009 %E A157210 Edited by _G. C. Greubel_, Jan 10 2022