This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157211 #8 Jan 10 2022 18:13:39 %S A157211 1,1,1,1,4,1,1,15,15,1,1,50,134,50,1,1,157,960,960,157,1,1,480,6013, %T A157211 12636,6013,480,1,1,1451,34717,136809,136809,34717,1451,1,1,4366, %U A157211 190528,1303472,2361474,1303472,190528,4366,1,1,13113,1012326,11392866,34496986,34496986,11392866,1012326,13113,1 %N A157211 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 2, read by rows. %H A157211 G. C. Greubel, <a href="/A157211/b157211.txt">Rows n = 0..50 of the triangle, flattened</a> %F A157211 T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 2. %F A157211 T(n, n-k, m) = T(n, k, m). %F A157211 T(n, 1, 2) = A132308(n-1). - _G. C. Greubel_, Jan 10 2022 %e A157211 Triangle begins as: %e A157211 1; %e A157211 1, 1; %e A157211 1, 4, 1; %e A157211 1, 15, 15, 1; %e A157211 1, 50, 134, 50, 1; %e A157211 1, 157, 960, 960, 157, 1; %e A157211 1, 480, 6013, 12636, 6013, 480, 1; %e A157211 1, 1451, 34717, 136809, 136809, 34717, 1451, 1; %e A157211 1, 4366, 190528, 1303472, 2361474, 1303472, 190528, 4366, 1; %e A157211 1, 13113, 1012326, 11392866, 34496986, 34496986, 11392866, 1012326, 13113, 1; %t A157211 f[n_,k_]:= If[k<=Floor[n/2], k, n-k]; %t A157211 T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*f[n,k]*T[n-2,k-1,m]]; %t A157211 Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jan 10 2022 *) %o A157211 (Sage) %o A157211 def f(n,k): return k if (k <= n//2) else n-k %o A157211 @CachedFunction %o A157211 def T(n,k,m): # A157211 %o A157211 if (k==0 or k==n): return 1 %o A157211 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*f(n,k)*T(n-2,k-1,m) %o A157211 flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jan 10 2022 %Y A157211 Cf. A007318 (m=0), A157210 (m=1), this sequence (m=2), A157212 (m=3). %Y A157211 Cf. A157147, A157148, A157149, A157150, A157151, A157152, A157153, A157154, A157155, A157156, A157207, A157208, A157209, A157268, A157272, A157273, A157274, A157275. %Y A157211 Cf. A132308. %K A157211 nonn,tabl %O A157211 0,5 %A A157211 _Roger L. Bagula_, Feb 25 2009 %E A157211 Edited by _G. C. Greubel_, Jan 10 2022