A157218 Number of ways to write the n-th positive odd integer in the form p+2^x+7*2^y with p a prime congruent to 1 mod 6 and x,y positive integers.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 0, 2, 3, 1, 1, 3, 1, 1, 4, 2, 3, 2, 1, 3, 3, 2, 3, 5, 1, 2, 5, 2, 4, 5, 1, 4, 3, 1, 4, 7, 1, 5, 7, 2
Offset: 1
Examples
For n=19 the a(19)=3 solutions are 2*19 - 1 = 7 + 2 + 7*2^2 = 7 + 2^4 + 7*2 = 19 + 2^2 + 7*2.
References
- R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.
Links
- Zhi-Wei Sun, Table of n, a(n) for n=1..200000
- Z. W. Sun, Mixed sums of primes and other terms, preprint, 2009. arXiv:0901.3075
- Zhi-Wei Sun, A webpage: Mixed Sums of Primes and Other Terms, 2009.
- Zhi-Wei Sun, A project for the form p+2^x+k*2^y with k=3,5,...,61
- Zhi-Wei Sun, A promising conjecture: n=p+F_s+F_t
- Z.-W. Sun and M.-H. Le, Integers not of the form c*(2^a + 2^b) + p^{alpha}, Acta Arith. 99(2001), 183-190.
Crossrefs
Programs
-
Mathematica
PQ[x_]:=x>1&&Mod[x,6]==1&&PrimeQ[x] RN[n_]:=Sum[If[PQ[2n-1-7*2^x-2^y],1,0], {x,1,Log[2,(2n-1)/7]},{y,1,Log[2,Max[2,2n-1-7*2^x]]}] Do[Print[n," ",RN[n]],{n,1,200000}]
Formula
a(n) = |{
: p+2^x+7*2^y=2n-1 with p a prime congruent to 1 mod 6 and x,y positive integers}|.
Comments