cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157226 Number of primitive inequivalent sublattices of square lattice having mirrors parallel to the sides of the unit cell of the parent lattice of index n.

This page as a plain text file.
%I A157226 #20 Oct 01 2018 06:56:29
%S A157226 0,1,1,2,1,3,1,2,1,3,1,4,1,3,2,2,1,3,1,4,2,3,1,4,1,3,1,4,1,6,1,2,2,3,
%T A157226 2,4,1,3,2,4,1,6,1,4,2,3,1,4,1,3,2,4,1,3,2,4,2,3,1,8,1,3,2,2,2,6,1,4,
%U A157226 2,6,1,4,1,3,2,4,2,6,1,4,1,3,1,8,2,3,2
%N A157226 Number of primitive inequivalent sublattices of square lattice having mirrors parallel to the sides of the unit cell of the parent lattice of index n.
%C A157226 _Andrey Zabolotskiy_'s new formula confirms that a(n) indeed is a function of A305891(n). - _Antti Karttunen_, Oct 01 2018
%H A157226 Andrey Zabolotskiy, <a href="/A157226/b157226.txt">Table of n, a(n) for n = 1..5000</a>
%H A157226 John S. Rutherford, <a href="http://dx.doi.org/10.1107/S010876730804333X">Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type</a>, Acta Cryst. (2009). A65, 156-163. [See Table 5.]
%F A157226 From _Andrey Zabolotskiy_, Sep 30 2018: (Start)
%F A157226 Let b(n) = A007875(n) for n>1, b(1) = 0. Then
%F A157226 a(n) = b(n) for odd n,
%F A157226 a(n) = b(n) + b(n/2) for even n.
%F A157226 Thus the sorted list of all terms (except for a(1)=0) is A029744. (End)
%o A157226 (PARI)
%o A157226 A007875(n) = eulerphi(2^omega(n));
%o A157226 A157226(n) = if(n<=2,n-1,(A007875(n) + if(!(n%2),A007875(n/2)))); \\ _Antti Karttunen_, Oct 01 2018
%Y A157226 Cf. A145393 (all sublattices of the square lattice), A019590, A157228, A157230, A157231, A304182, A007875, A029744.
%K A157226 nonn
%O A157226 1,4
%A A157226 _N. J. A. Sloane_, Feb 25 2009
%E A157226 New name and more terms from _Andrey Zabolotskiy_, May 09 2018