cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157230 Number of primitive inequivalent sublattices of square lattice having mirrors parallel to the diagonals of the unit cell of the parent lattice of index n.

This page as a plain text file.
%I A157230 #31 Apr 13 2023 10:43:55
%S A157230 0,0,1,1,1,1,1,2,1,1,1,2,1,1,2,2,1,1,1,2,2,1,1,4,1,1,1,2,1,2,1,2,2,1,
%T A157230 2,2,1,1,2,4,1,2,1,2,2,1,1,4,1,1,2,2,1,1,2,4,2,1,1,4,1,1,2,2,2,2,1,2,
%U A157230 2,2,1,4,1,1,2,2,2,2,1,4,1,1,1,4,2,1,2
%N A157230 Number of primitive inequivalent sublattices of square lattice having mirrors parallel to the diagonals of the unit cell of the parent lattice of index n.
%C A157230 After a(2), this matches A034380 except for n = 63, 65, 80, 85, ... - _R. J. Mathar_, Feb 27 2009 [Updated by _Andrey Zabolotskiy_, May 09 2018]
%H A157230 Andrey Zabolotskiy, <a href="/A157230/b157230.txt">Table of n, a(n) for n = 1..5000</a>
%H A157230 J. S. Rutherford, <a href="https://doi.org/10.1107/S010876730804333X">Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type</a>, Act. Cryst. A65 (2009) 156-163, Table 5 symmetry *mm2.
%F A157230 From _Andrey Zabolotskiy_, Sep 30 2018: (Start)
%F A157230 a(n) = (A060594(n) - A019590(n))/2.
%F A157230 a(n) = 2^(A046072(n)-1) for n>2. Thus a(n) = 1 if n>2 is in A033948, a(n) = 2 if n is in A272592, etc. (End)
%t A157230 a[n_] := If[n <= 2, 0, Sum[Boole[Mod[k^2, n] == 1], {k, 1, n}]/2];
%t A157230 Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Apr 12 2023 *)
%Y A157230 Cf. A145393 (all sublattices of the square lattice), A019590, A157228, A157226, A157231, A304182, A060594, A046072, A033948, A272592.
%K A157230 nonn
%O A157230 1,8
%A A157230 _N. J. A. Sloane_, Feb 25 2009
%E A157230 New name and more terms from _Andrey Zabolotskiy_, May 09 2018