A157235 Number of primitive inequivalent oblique sublattices of hexagonal (triangular) lattice of index n (equivalence and symmetry of sublattices are determined using only parent lattice symmetries).
0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 1, 2, 1, 3, 2, 2, 2, 5, 2, 4, 3, 5, 3, 4, 4, 6, 5, 6, 4, 10, 4, 6, 6, 8, 6, 10, 5, 9, 7, 8, 6, 14, 6, 10, 10, 11, 7, 12, 8, 14, 10, 12, 8, 17, 10, 12, 11, 14, 9, 20, 9, 15, 14, 14, 12, 22, 10, 16, 14, 22, 11, 20, 11, 18, 18, 18
Offset: 1
Keywords
Links
- John S. Rutherford, Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type, Acta Cryst. (2009). A65, 156-163. [See Table 5.]
Crossrefs
Cf. A003051 (all sublattices), A003050 (all primitive sublattices), A154272 (primitive sublattices fully inheriting the parent lattice symmetry, inlcuding the orientation of the mirrors), A000086 (primitive rotation-symmetric sublattices, counting mirror images as distinct), A060594 (primitive mirror-symmetric sublattices), A145377 (all sublattices inheriting the parent lattice symmetry), A304182.
Formula
Extensions
New name and a(1)=0 prepended by Andrey Zabolotskiy, May 09 2018
Terms a(31) and beyond from Andrey Zabolotskiy, Mar 19 2021