A157372 Number of ways to write the (n+50)-th positive odd integer in the form p+2^x+51*2^y with p an odd prime and x,y positive integers.
0, 0, 0, 1, 2, 2, 2, 2, 3, 1, 3, 4, 2, 2, 3, 1, 2, 3, 3, 2, 4, 1, 2, 5, 2, 3, 3, 1, 3, 2, 1, 3, 4, 1, 2, 5, 2, 2, 6, 3, 2, 3, 3, 2, 4, 1, 3, 3, 2, 1, 3, 2, 2, 6, 3, 4, 7, 4, 5, 7
Offset: 1
Examples
For n = 9 the a(9) = 3 solutions are: 2*59-1 = 7+2^3+51*2 = 11+2^2+51*2 = 13+2+51*2.
References
- R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.
- Z. W. Sun and M. H. Le, Integers not of the form c(2^a+2^b)+p^{alpha}, Acta Arith. 99(2001), 183-190.
Links
- Zhi-Wei Sun, Table of n, a(n) for n=1..200000
- Zhi-Wei Sun, A webpage: Mixed Sums of Primes and Other Terms, 2009.
- Zhi-Wei Sun, A project for the form p+2^x+k*2^y with k=3,5,...,61
- Zhi-Wei Sun, A curious conjecture about p+2^x+11*2^y
- Z. W. Sun, Mixed sums of primes and other terms, preprint, 2009. arXiv:0901.3075
Crossrefs
Programs
-
Mathematica
PQ[x_]:=x>1&&PrimeQ[x] RN[n_]:=Sum[If[PQ[2(n+50)-1-51*2^x-2^y],1,0], {x,1,Log[2,(2(n+50)-1)/51]},{y,1,Log[2,Max[2,2(n+50)-1-51*2^x]]}] Do[Print[n," ",RN[n]],{n,1,200000}]
Formula
a(n)=|{
: p+2^x+51*2^y=2(n+50)-1 with p an odd prime and x,y positive integers}|
Comments