A157249 Generalized Wilson quotients (or Wilson quotients for composite moduli).
2, 1, 1, 1, 5, 1, 103, 13, 249, 19, 329891, 32, 36846277, 1379, 59793, 126689, 1230752346353, 4727, 336967037143579, 436486, 2252263619, 56815333, 48869596859895986087, 1549256, 1654529071288638505, 23390099351, 56463097772562963, 51860555558, 10513391193507374500051862069
Offset: 1
Keywords
Examples
P(8) = 3*5*7 = 105 and e(8) = -1, so a(8) = (105-1)/8 = 13.
References
- L. E. Dickson, History of the Theory of Numbers, vol. 1, Divisibility and Primality, Chelsea, New York, 1966.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..200
- T. Agoh, K. Dilcher, and L. Skula, Wilson quotients for composite moduli, Math. Comp. 67 (1998), 843-861.
- K. E. Kloss, Some Number-Theoretic Calculations, J. Research of the National Bureau of Standards-B. Mathematics and Mathematical Physics, Vol. 69B, No. 4 (1965), 335-336.
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, in Proceedings of CANT 2011, arXiv:1110.3113 [math.NT], 2011-2012.
Crossrefs
Programs
-
Maple
a := proc(n) local A001783,e,i; A001783 := proc(n) local i; mul(i,i=select(k->igcd(k,n)=1,[$1..n]))end; e := proc(n) local p,r,P; if n=1 or n=2 or n=4 then RETURN(1) fi; P := select(isprime,[$3..n]); for p in P do r := p; while r <= n do if n = r or n = 2*r then RETURN(1) fi; r := r*p; od od; -1 end; (A001783(n)+e(n))/n end: # Peter Luschny, Jul 19 2009
-
Mathematica
p[n_] := Times @@ Select[ Range[n], CoprimeQ[n, #] & ]; e[1 | 2 | 4] = 1; e[n_] := (fi = FactorInteger[n]; If[MatchQ[fi, {{(p_)?OddQ, }} | {{2, 1}, {, }}], 1, -1]); a[n] := (p[n] + e[n])/n; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Sep 28 2011 *)
Formula
a(n) = (P(n)+e(n))/n, with P(n) = n-phi-torial = A001783(n) and e(n) = +1 if n = 1, 2, 4, p^k or 2p^k, where p is an odd prime and k > 0, and e(n) = -1 otherwise.
Comments