cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157249 Generalized Wilson quotients (or Wilson quotients for composite moduli).

Original entry on oeis.org

2, 1, 1, 1, 5, 1, 103, 13, 249, 19, 329891, 32, 36846277, 1379, 59793, 126689, 1230752346353, 4727, 336967037143579, 436486, 2252263619, 56815333, 48869596859895986087, 1549256, 1654529071288638505, 23390099351, 56463097772562963, 51860555558, 10513391193507374500051862069
Offset: 1

Views

Author

Jonathan Sondow and Wadim Zudilin, Feb 27 2009

Keywords

Comments

By Wilson's Theorem, for prime p the Wilson quotient ((p-1)!+1)/p is an integer A007619. By Gauss's extension (see Dickson p. 65), the generalized Wilson quotient (P(n)+e(n))/n is an integer, where P(n) = n-phi-torial A001783 and e(n) = +1 or -1 according as n does or does not have a primitive root (see A033948).
For additional references and links, see A007540.

Examples

			P(8) = 3*5*7 = 105 and e(8) = -1, so a(8) = (105-1)/8 = 13.
		

References

  • L. E. Dickson, History of the Theory of Numbers, vol. 1, Divisibility and Primality, Chelsea, New York, 1966.

Crossrefs

Cf. Wilson quotient A007619, Wilson prime A007540, Wilson number A157250, n-phi-torial A001783, numbers having a primitive root A033948.
Cf. A317507.

Programs

  • Maple
    a := proc(n) local A001783,e,i;
    A001783 := proc(n) local i; mul(i,i=select(k->igcd(k,n)=1,[$1..n]))end;
    e := proc(n) local p,r,P; if n=1 or n=2 or n=4 then RETURN(1) fi;
    P := select(isprime,[$3..n]); for p in P do r := p;
    while r <= n do if n = r or n = 2*r then RETURN(1) fi;
    r := r*p; od od; -1 end; (A001783(n)+e(n))/n end:
    # Peter Luschny, Jul 19 2009
  • Mathematica
    p[n_] := Times @@ Select[ Range[n], CoprimeQ[n, #] & ]; e[1 | 2 | 4] = 1; e[n_] := (fi = FactorInteger[n]; If[MatchQ[fi, {{(p_)?OddQ, }} | {{2, 1}, {, }}], 1, -1]); a[n] := (p[n] + e[n])/n; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Sep 28 2011 *)

Formula

a(n) = (P(n)+e(n))/n, with P(n) = n-phi-torial = A001783(n) and e(n) = +1 if n = 1, 2, 4, p^k or 2p^k, where p is an odd prime and k > 0, and e(n) = -1 otherwise.