This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157272 #6 Feb 05 2022 02:31:57 %S A157272 1,1,1,1,7,1,1,20,20,1,1,47,155,47,1,1,102,753,753,102,1,1,213,3004, %T A157272 7109,3004,213,1,1,436,10800,48727,48727,10800,436,1,1,883,36517, %U A157272 280736,551251,280736,36517,883,1,1,1778,118795,1454163,4879214,4879214,1454163,118795,1778,1 %N A157272 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 1, read by rows. %H A157272 G. C. Greubel, <a href="/A157272/b157272.txt">Rows n = 0..50 of the triangle, flattened</a> %F A157272 T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 1. %F A157272 T(n, n-k, m) = T(n, k, m). %e A157272 Triangle begins as: %e A157272 1; %e A157272 1, 1; %e A157272 1, 7, 1; %e A157272 1, 20, 20, 1; %e A157272 1, 47, 155, 47, 1; %e A157272 1, 102, 753, 753, 102, 1; %e A157272 1, 213, 3004, 7109, 3004, 213, 1; %e A157272 1, 436, 10800, 48727, 48727, 10800, 436, 1; %e A157272 1, 883, 36517, 280736, 551251, 280736, 36517, 883, 1; %e A157272 1, 1778, 118795, 1454163, 4879214, 4879214, 1454163, 118795, 1778, 1; %t A157272 f[n_,k_]:= If[k<=Floor[n/2], 2*k+1, 2*(n-k)+1]; %t A157272 T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]]; %t A157272 Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Feb 04 2022 *) %o A157272 (Sage) %o A157272 def f(n,k): return 2*k+1 if (k <= n//2) else 2*(n-k)+1 %o A157272 @CachedFunction %o A157272 def T(n,k,m): # A157207 %o A157272 if (k==0 or k==n): return 1 %o A157272 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m) %o A157272 flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 04 2022 %Y A157272 Cf. A007318 (m=0), this sequence (m=1), A157273 (m=2), A157274 (m=3). %Y A157272 Cf. A157147, A157148, A157149, A157150, A157151, A157152, A157153, A157154, A157155, A157156, A157207, A157208, A157209, A157210, A157211, A157212, A157268, A157275, A157277, A157278. %K A157272 nonn,tabl %O A157272 0,5 %A A157272 _Roger L. Bagula_, Feb 26 2009 %E A157272 Edited by _G. C. Greubel_, Feb 04 2022