This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157289 #13 May 22 2020 11:44:08 %S A157289 1,1,8,1,5,6,4,9,4,9,0,1,0,2,5,6,9,1,2,5,6,9,3,9,9,7,3,4,1,6,0,4,5,4, %T A157289 2,6,0,5,4,7,0,2,3,2,6,0,7,6,8,6,8,2,6,1,0,2,8,3,0,4,3,1,4,8,8,7,7,2, %U A157289 0,5,4,2,1,1,1,0,3,1,8,8,3,9,9,0,0,2,9,9,4,8,7,1,1,8,4,4,4,9,2,7,0,1,1,4,8 %N A157289 Decimal expansion of Zeta(3)/Zeta(6). %C A157289 The Product_{p = primes = A000040} (1+1/p^3), the cubic analog to A082020. %F A157289 Equals A002117/A013664 = Product_{i} (1+1/A030078(i)). %F A157289 Equals Sum_{k>=1} 1/A062838(k) = Sum_{k>=1} 1/A005117(k)^3. - _Amiram Eldar_, May 22 2020 %e A157289 1.181564949010256912569399734... = (1+1/2^3)*(1+1/3^3)*(1+1/5^3)*(1+1/7^3)*... %p A157289 evalf(Zeta(3)/Zeta(6)) ; %t A157289 RealDigits[Zeta[3]/Zeta[6],10,120][[1]] (* _Harvey P. Dale_, Jul 23 2016 *) %Y A157289 Cf. A002117, A005117, A013664, A030078, A062838, A082020. %K A157289 cons,nonn %O A157289 1,3 %A A157289 _R. J. Mathar_, Feb 26 2009