This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157293 #13 May 26 2023 05:54:57 %S A157293 1,1,9,9,6,4,7,5,3,9,6,4,7,1,3,9,7,9,0,9,4,8,0,7,8,3,0,4,8,1,0,4,0,2, %T A157293 3,3,0,9,9,9,8,6,5,8,5,0,2,6,2,4,3,0,8,5,3,4,7,6,0,2,7,8,1,5,5,2,4,1, %U A157293 9,8,3,8,0,7,7,0,9,8,1,0,0,3,6,8,4,2,0,2,4,5,8,0,1,0,9,7,8,4,7,3,1,2,3,8,8 %N A157293 Decimal expansion of zeta(3)/zeta(9). %C A157293 The product Product_{p = primes = A000040} (1+1/p^3+1/p^6). The product over (1+2/p^3+1/p^6) equals A157289^2. %H A157293 R. J. Mathar, <a href="http://arxiv.org/abs/0903.2514">Hardy-Littlewood constants embedded into infinite products over all positive integers</a>, arXiv:0903.2514 [math.NT], 2009-2011, eq. (23). %F A157293 Equals A002117/A013667 = Product_{i>=1} (1+1/A030078(i)+1/A030516(i)) . %e A157293 1.19964753964713... = (1+1/2^3+1/2^6)*(1+1/3^3+1/3^6)*(1+1/5^3+1/5^6)*(1+1/7^3+1/7^6)*... %p A157293 evalf(Zeta(3)/Zeta(9)) ; %t A157293 RealDigits[Zeta[3]/Zeta[9], 10, 120][[1]] (* _Amiram Eldar_, May 26 2023 *) %Y A157293 Cf. A002117, A013667, A030078, A030516, A157289. %K A157293 cons,easy,nonn %O A157293 1,3 %A A157293 _R. J. Mathar_, Feb 26 2009