This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157310 #6 Feb 04 2025 09:00:11 %S A157310 1,1,1,0,-3,0,38,0,-947,0,37394,0,-2120190,0,162980012,0,-16330173251, %T A157310 0,2070201641498,0,-324240251016266,0,61525045423103316,0, %U A157310 -13913915097436287598,0,3698477457114061621492,0 %N A157310 G.f. A(x) satisfies the condition that both A(x) and F(x) = A(x/F(x)) = o.g.f. of A157309 have zeros for every other coefficient after initial terms; g.f. of dual sequence A155585 satisfies the same condition. %C A157310 After initial 2 terms, reversing signs yields A157308. %F A157310 Let F(x) = A(x/F(x)) = o.g.f. of A157309, then F(x) satisfies: %F A157310 A(x) = Series_Reversion(x/F(x))/x; %F A157310 A(x) = F(x*A(x)); %F A157310 F(x) = A(x/F(x)); %F A157310 where A157309 has zeros for every other term after initial [1,1]. %F A157310 ... %F A157310 Let G(x) = o.g.f. of A122045, then o.g.f. A(x) satisfies: %F A157310 A(x) = 2+x - x/Series_Reversion(x*G(x)); %F A157310 A(x) = 2+x - G( x/(2+x - A(x)) ); %F A157310 G(x) = (2 - A(x*G(x)))/(1-x); %F A157310 where A122045 is the Euler numbers. %F A157310 ... %F A157310 Let H(x) = o.g.f. of A155585, then o.g.f. A(x) satisfies: %F A157310 A(x) = 2(1+x) - x/Series_Reversion(x*H(x)); %F A157310 A(x) = 2 - H( -x/(2 - A(x)) ); %F A157310 A(x) = H(-x/A(x)); %F A157310 H(x) = A(x*H(-x)); %F A157310 where A155585 is defined by e.g.f. exp(x)/cosh(x). %F A157310 ... %F A157310 O.g.f.: A(x) = 2*(1+x) - B(x) where B(x) = g.f. of A157308. %e A157310 G.f.: A(x) = 1 + x + x^2 - 3*x^4 + 38*x^6 - 947*x^8 + 37394*x^10 -+... %e A157310 RELATED FUNCTIONS. %e A157310 If F(x) = A(x/F(x)) then F(x) = o.g.f. of A157309: %e A157310 A157309 = [1,1,0,-1,0,9,0,-176,0,5693,0,-272185,0,...]; %e A157310 ... %e A157310 If G(x) = (2 - A(x*G(x)))/(1-x) then G(x) = o.g.f. of A122045: %e A157310 A122045 = [1,0,-1,0,5,0,-61,0,1385,0,-50521,0,2702765,0,...]; %e A157310 ... %e A157310 Let H(x) = A(x*H(-x)) = o.g.f. of A155585: %e A157310 A155585 = [1,1,0,-2,0,16,0,-272,0,7936,0,-353792,0,...]; %e A157310 ... %o A157310 (PARI) {a(n)=local(A=[1, 1]); for(i=1, n, if(#A%2==1, A=concat(A, 0);); if(#A%2==0, A=concat(A, t); A[ #A]=-subst(Vec(x/serreverse(x*Ser(A)))[ #A], t, 0))); A[n+1]} %Y A157310 Cf. A157308, A157309, A155585, A157304, A157305, A122045 (Euler numbers). %K A157310 sign %O A157310 0,5 %A A157310 _Paul D. Hanna_, Mar 11 2009