This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157311 #7 Aug 15 2023 02:08:38 %S A157311 1,1,1,4,13,66,394,2759,22005,198049,1979646,21776107,261287398, %T A157311 3396736175,47553219799,713298307974,11412712029909,194016104508454, %U A157311 3492285524896921,66353424973041500,1327068107226627278,27868430252187313730,613105422439139763585 %N A157311 G.f.: exp( Sum_{n>=1} a(n)*x^n/n ) = Product_{n>=1} (1 + a(n-1)*x^n). %F A157311 a(n) = Sum_{d divides n, 1<=d<=n} -d*(-a(d-1))^(n/d) for n>0 with a(0)=1. %F A157311 Product_{n>=1} (1 + a(n-1)*x^n) = g.f. of A157312. %e A157311 Define G(x) by the exponential: %e A157311 G(x) = exp(x + x^2/2 + 4*x^3/3 + 13*x^4/4 + 66*x^5/5 + 394*x^6/6 +...) %e A157311 then G(x) also equals the product: %e A157311 G(x) = (1 + x)(1 + x^2)(1 + x^3)(1 + 4*x^4)(1 + 13*x^5)(1 + 66*x^6)*...; %e A157311 where the coefficients in both expressions are the same (with offset) %e A157311 and G(x) is the g.f. of A157312: %e A157311 G(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 18*x^5 + 84*x^6 + 481*x^7 + 3249*x^8 +... %t A157311 a[0] = 1; a[n_] := a[n] = DivisorSum[n, -# * (-a[#-1])^(n/#) &]; Array[a, 20, 0] (* _Amiram Eldar_, Aug 15 2023 *) %o A157311 (PARI) {a(n)=if(n==0,1,sumdiv(n,d,if(d>=1&d<=n,-d*(-a(d-1))^(n/d))))} %o A157311 (PARI) {a(n)=if(n==0, 1,n*polcoeff(1+sum(k=1,n,log(1+a(k-1)*x^k +x*O(x^n))),n))} %o A157311 (PARI) {a(n)=if(n==0, 1,n*polcoeff(sum(k=1,n,-sum(j=1,n\k,(-a(k-1))^j*x^(k*j)/j)+x*O(x^n)),n))} %Y A157311 Cf. A157312. %K A157311 nonn %O A157311 0,4 %A A157311 _Paul D. Hanna_, Mar 10 2009