This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157332 #12 Jul 22 2025 06:22:40 %S A157332 5,-956,-375,163823028,15625,-15596225303980,-546875, %T A157332 1247220779824098212,17578125,-91597497639855832244124,-537109375, %U A157332 6394838587727583881086964116,15869140625,-431694043145875922302762745864588,-457763671875 %N A157332 Denominators of Egyptian fraction for Pi/16 based on Machin's formula. %C A157332 Machin's formula: Pi/4 = 4*atan(1/5) - atan(1/239). %C A157332 Sum_{n>=0} 1/a(n) = Pi/16 = atan(1/5) - (1/4)*atan(1/239). %H A157332 G. C. Greubel, <a href="/A157332/b157332.txt">Table of n, a(n) for n = 0..415</a> %H A157332 X. Gourdon and P. Sebah, <a href="http://numbers.computation.free.fr/Constants/Pi/piSeries.html">Collection of series for Pi</a> %F A157332 a(2n) = (2*n+1)*5^(2*n+1)*(-1)^n, %F A157332 a(2n+1) = -4*(2*n+1)*239^(2*n+1)*(-1)^n. %F A157332 G.f.: 5*(1-25*x^2)/(1+25*x^2)^2 - 956*x*(1-57121*x^2)/(1+57121*x^2)^2 %p A157332 seq(coeff(series(5*(1-(5*x)^2)/(1+(5*x)^2)^2 - 4*239*x*(1-(239*x)^2)/(1+(239*x)^2)^2, x, n+1), x, n), n = 0..15); # _G. C. Greubel_, Aug 26 2019 %t A157332 CoefficientList[Series[5*(1-(5*x)^2)/(1+(5*x)^2)^2 - 4*239*x*(1-(239*x)^2)/(1+(239*x)^2)^2, {x,0,15}], x] (* _G. C. Greubel_, Aug 26 2019 *) %o A157332 (PARI) my(x='x+O('x^15)); Vec(5*(1-(5*x)^2)/(1+(5*x)^2)^2 - 4*239*x*(1-(239*x)^2)/(1+(239*x)^2)^2) \\ _G. C. Greubel_, Aug 26 2019 %o A157332 (Magma) R<x>:=PowerSeriesRing(Integers(), 15); Coefficients(R!( 5*(1-(5*x)^2)/(1+(5*x)^2)^2 - 4*239*x*(1-(239*x)^2)/(1+(239*x)^2)^2 )); // _G. C. Greubel_, Aug 26 2019 %o A157332 (Sage) %o A157332 def A077952_list(prec): %o A157332 P.<x> = PowerSeriesRing(ZZ, prec) %o A157332 return P( 5*(1-(5*x)^2)/(1+(5*x)^2)^2 - 4*239*x*(1-(239*x)^2)/(1+(239*x)^2)^2 ).list() %o A157332 A077952_list(15) # _G. C. Greubel_, Aug 26 2019 %o A157332 (GAP) %o A157332 a:= function(n) %o A157332 if n mod 2=0 then return (-1)^(n/2)*(n+1)*5^(n+1); %o A157332 else return -4*(-1)^((n-1)/2)*n*(239)^n; %o A157332 fi; %o A157332 end; %o A157332 List([0..15], n-> a(n) ); # _G. C. Greubel_, Aug 26 2019 %Y A157332 Cf. A019683, A072172, A072173. %K A157332 frac,sign,easy %O A157332 0,1 %A A157332 _Jaume Oliver Lafont_, Feb 27 2009 %E A157332 More terms from _Colin Barker_, Aug 07 2013