cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157342 Semiprimes that are the product of two non-Sophie Germain primes.

This page as a plain text file.
%I A157342 #16 Feb 12 2022 09:36:16
%S A157342 49,91,119,133,169,217,221,247,259,289,301,323,329,361,403,413,427,
%T A157342 469,481,497,511,527,553,559,589,611,629,679,703,707,721,731,749,763,
%U A157342 767,793,799,817,871,889,893,923,949,959,961,973,1003,1027,1037,1043,1057
%N A157342 Semiprimes that are the product of two non-Sophie Germain primes.
%H A157342 G. C. Greubel, <a href="/A157342/b157342.txt">Table of n, a(n) for n = 1..5000</a>
%e A157342 49 = 7*7, 2*7 + 1 = 15 (not prime);
%e A157342 91 = 7*13, 2*7 + 1 = 15 (not prime), 2*13 + 1 = 27 (not prime); ...
%t A157342 lst={};Do[If[Plus@@Last/@FactorInteger[n]==2,a=First/@FactorInteger[n];b=a[[1]];k=0;If[Length[a]==2,c=a[[2]];If[PrimeQ[2*c+1],k=1]];If[ !PrimeQ[2*b+1]&&k==0,AppendTo[lst,n]]],{n,7!}];lst
%t A157342 With[{nn=60},Take[Times@@@Tuples[Select[Prime[Range[nn]],!PrimeQ[ 2#+1]&], 2] // Union,nn]] (* _Harvey P. Dale_, Feb 15 2017 *)
%Y A157342 Cf. A001358, A005384, A111206.
%K A157342 nonn
%O A157342 1,1
%A A157342 _Vladimir Joseph Stephan Orlovsky_, Feb 27 2009