This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157385 #2 Mar 30 2012 17:27:11 %S A157385 1,1,5,1,15,30,1,105,120,210,1,425,1800,1050,1680,1,3075,18600,18900, %T A157385 10080,15120,1,15855,174300,338100,211680,105840,151200,1,123515, %U A157385 2227680,4865700,4327680,2540160,1209600,1663200,1,757755 %N A157385 A partition product of Stirling_1 type [parameter k = -5] with biggest-part statistic (triangle read by rows). %C A157385 Partition product of prod_{j=0..n-2}(k-n+j+2) and n! at k = -5, %C A157385 summed over parts with equal biggest part (see the Luschny link). %C A157385 Underlying partition triangle is A144355. %C A157385 Same partition product with length statistic is A049353. %C A157385 Diagonal a(A000217(n)) = rising_factorial(5,n-1), A001720(n+3). %C A157385 Row sum is A049378. %H A157385 Peter Luschny, <a href="http://www.luschny.de/math/seq/CountingWithPartitions.html"> Counting with Partitions</a>. %H A157385 Peter Luschny, <a href="http://www.luschny.de/math/seq/stirling1partitions.html"> Generalized Stirling_1 Triangles</a>. %F A157385 T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n %F A157385 T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that %F A157385 1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!), %F A157385 f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-2}(j-n-3). %Y A157385 Cf. A157386, A157384, A157383, A157400, A126074, A157391, A157392, A157393, A157394, A157395 %K A157385 easy,nonn,tabl %O A157385 1,3 %A A157385 _Peter Luschny_, Mar 07 2009, Mar 14 2009