A157394 A partition product of Stirling_1 type [parameter k = 4] with biggest-part statistic (triangle read by rows).
1, 1, 4, 1, 12, 12, 1, 72, 48, 24, 1, 280, 600, 120, 24, 1, 1740, 4560, 1800, 144, 0, 1, 8484, 40740, 21000, 2520, 0, 0, 1, 57232, 390432, 223440, 33600, 0, 0, 0, 1, 328752, 3811248, 2845584, 438480, 0, 0, 0, 0, 1, 2389140
Offset: 1
Examples
1 1 4 1 12 12 1 72 48 24 1 280 600 120 24 1 1740 4560 1800 144 0 1 8484 40740 21000 2520 0 0 1 57232 390432 223440 33600 0 0 0 1 328752 3811248 2845584 438480 0 0 0 0 1 2389140
Links
- Peter Luschny, Counting with Partitions.
- Peter Luschny, Generalized Stirling_1 Triangles.
Crossrefs
Formula
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-2}(j-n+6).
Comments