This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157398 #2 Mar 30 2012 17:27:11 %S A157398 1,1,4,1,12,28,1,72,112,280,1,280,1400,1400,3640,1,1740,15120,21000, %T A157398 21840,58240,1,8484,126420,401800,382200,407680,1106560,1,57232, %U A157398 1538208,6370000,8357440,8153600,8852480,24344320,1 %N A157398 A partition product of Stirling_2 type [parameter k = -4] with biggest-part statistic (triangle read by rows). %C A157398 Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = -4, %C A157398 summed over parts with equal biggest part (see the Luschny link). %C A157398 Underlying partition triangle is A134149. %C A157398 Same partition product with length statistic is A035469. %C A157398 Diagonal a(A000217) = A007559. %C A157398 Row sum is A049119. %H A157398 Peter Luschny, <a href="http://www.luschny.de/math/seq/CountingWithPartitions.html"> Counting with Partitions</a>. %H A157398 Peter Luschny, <a href="http://www.luschny.de/math/seq/stirling2partitions.html"> Generalized Stirling_2 Triangles</a>. %F A157398 T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n %F A157398 T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that %F A157398 1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!), %F A157398 f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(-3*j - 1). %Y A157398 Cf. A157396, A157397, A157399, A157400, A080510, A157401, A157402, A157403, A157404, A157405 %K A157398 easy,nonn,tabl %O A157398 1,3 %A A157398 _Peter Luschny_, Mar 09 2009, Mar 14 2009