This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157406 #5 Oct 04 2012 16:26:36 %S A157406 0,1,2,4,3,9,21,4,16,12,56,156,5,25,20,115,85,475,1555,6,36,30,204,24, %T A157406 162,1086,114,792,5202,19608,7,49,42,329,35,273,2121,217,210,1673, %U A157406 12873,1169,9289,70217,299593 %N A157406 The integer partitions of n taken as digits in base n+1 and listed in the Hindenburg order. %C A157406 The rows are enumerated 0,1,2,... Converting the numbers in the n-th row (n>0) to base n+1 gives all partitions of n in the 'Hindenburg order'. The term 'Hindenburg order' is not standard and refers to the partition generating algorithm of C. F. Hindenburg (1779). %C A157406 The offset of row n (n>0) is A000070[n+1], the length of row n is A000041[n]. The right hand side of the triangle 0,1,4,21,156,... is A060072. %H A157406 Peter Luschny, <a href="http://www.luschny.de/math/seq/CountingWithPartitions.html"> Counting with Partitions</a>. %e A157406 [0] <-> [[ ]] %e A157406 [1] <-> [[1]] %e A157406 [2,4] <-> [[2],[1,1]] %e A157406 [3,9,21] <-> [[3],[1,2],[1,1,1]] %e A157406 [4,16,12,56,156] <-> [[4],[1,3],[2,2],[1,1,2],[1,1,1,1]] %p A157406 a := proc(n) local rev,P,R,i,l,s,k,j; %p A157406 rev := l -> [seq(l[nops(l)-j+1],j=1..nops(l))]; %p A157406 P := rev(combinat[partition](n)); R := NULL; %p A157406 for i to nops(P) do l := convert(P[i],base,n+1,10); %p A157406 s := add(l[k]*10^(k-1),k=1..nops(l)); %p A157406 R := R,s; od; R end: [0,seq(a(i),i=1..7)]; %Y A157406 Cf. A157407 %K A157406 easy,nonn,tabf,base %O A157406 0,3 %A A157406 _Peter Luschny_, Mar 11 2009