cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157473 Primes p such that (p-2)^(1/3) -+ 2 are also primes.

This page as a plain text file.
%I A157473 #11 Aug 31 2024 15:03:07
%S A157473 2,127,91127,328511,1157627,2146691,12326393,125751503,693154127,
%T A157473 751089431,1033364333,2102071043,2222447627,2893640627,3314613773,
%U A157473 3951805943,6591796877,9063964127,13464285941,16406426423,19880486831
%N A157473 Primes p such that (p-2)^(1/3) -+ 2 are also primes.
%e A157473 (127-2)^(1/3) - 2 = 3 and (127-2)^(1/3) + 2 = 7, so 127 is in the sequence.
%t A157473 q=2;lst={};Do[p=Prime[n];r=(p-q)^(1/3)-q;u=(p-q)^(1/3)+q;If[PrimeQ[r]&&PrimeQ[u],AppendTo[lst,p]],{n,4*9!}];lst
%t A157473 lst = {}; p = 0; While[p < 2955, If[ PrimeQ[p - 2] && PrimeQ[p + 2] && PrimeQ[p^3 + 2], AppendTo[lst, p^3 + 2]]; p++ ]; lst (* _Robert G. Wilson v_, Mar 08 2009 *)
%t A157473 Select[Prime[Range[10^6]],AllTrue[Surd[#-2,3]+{2,-2},PrimeQ]&] (* The program generates the first 7 terms of the sequence. *) (* _Harvey P. Dale_, Aug 31 2024 *)
%Y A157473 Cf. A127435, A127436, A157467, A157468.
%K A157473 nonn
%O A157473 1,1
%A A157473 _Vladimir Joseph Stephan Orlovsky_, Mar 01 2009
%E A157473 a(8)-a(21) from _Robert G. Wilson v_, Mar 08 2009